Skip to main content
Journal cover image

Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris.

Publication ,  Journal Article
Israel, JW; Martik, ML; Byrne, M; Raff, EC; Raff, RA; McClay, DR; Wray, GA
Published in: PLoS biology
March 2016

The ecologically significant shift in developmental strategy from planktotrophic (feeding) to lecithotrophic (nonfeeding) development in the sea urchin genus Heliocidaris is one of the most comprehensively studied life history transitions in any animal. Although the evolution of lecithotrophy involved substantial changes to larval development and morphology, it is not known to what extent changes in gene expression underlie the developmental differences between species, nor do we understand how these changes evolved within the context of the well-defined gene regulatory network (GRN) underlying sea urchin development. To address these questions, we used RNA-seq to measure expression dynamics across development in three species: the lecithotroph Heliocidaris erythrogramma, the closely related planktotroph H. tuberculata, and an outgroup planktotroph Lytechinus variegatus. Using well-established statistical methods, we developed a novel framework for identifying, quantifying, and polarizing evolutionary changes in gene expression profiles across the transcriptome and within the GRN. We found that major changes in gene expression profiles were more numerous during the evolution of lecithotrophy than during the persistence of planktotrophy, and that genes with derived expression profiles in the lecithotroph displayed specific characteristics as a group that are consistent with the dramatically altered developmental program in this species. Compared to the transcriptome, changes in gene expression profiles within the GRN were even more pronounced in the lecithotroph. We found evidence for conservation and likely divergence of particular GRN regulatory interactions in the lecithotroph, as well as significant changes in the expression of genes with known roles in larval skeletogenesis. We further use coexpression analysis to identify genes of unknown function that may contribute to both conserved and derived developmental traits between species. Collectively, our results indicate that distinct evolutionary processes operate on gene expression during periods of life history conservation and periods of life history divergence, and that this contrast is even more pronounced within the GRN than across the transcriptome as a whole.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

PLoS biology

DOI

EISSN

1545-7885

ISSN

1544-9173

Publication Date

March 2016

Volume

14

Issue

3

Start / End Page

e1002391

Related Subject Headings

  • Transcriptome
  • Selection, Genetic
  • Sea Urchins
  • Phylogeny
  • Nervous System
  • Larva
  • Gene Regulatory Networks
  • Gene Expression Profiling
  • Gastrointestinal Tract
  • Feeding Behavior
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Israel, J. W., Martik, M. L., Byrne, M., Raff, E. C., Raff, R. A., McClay, D. R., & Wray, G. A. (2016). Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris. PLoS Biology, 14(3), e1002391. https://doi.org/10.1371/journal.pbio.1002391
Israel, Jennifer W., Megan L. Martik, Maria Byrne, Elizabeth C. Raff, Rudolf A. Raff, David R. McClay, and Gregory A. Wray. “Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris.PLoS Biology 14, no. 3 (March 2016): e1002391. https://doi.org/10.1371/journal.pbio.1002391.
Israel, Jennifer W., et al. “Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris.PLoS Biology, vol. 14, no. 3, Mar. 2016, p. e1002391. Epmc, doi:10.1371/journal.pbio.1002391.
Journal cover image

Published In

PLoS biology

DOI

EISSN

1545-7885

ISSN

1544-9173

Publication Date

March 2016

Volume

14

Issue

3

Start / End Page

e1002391

Related Subject Headings

  • Transcriptome
  • Selection, Genetic
  • Sea Urchins
  • Phylogeny
  • Nervous System
  • Larva
  • Gene Regulatory Networks
  • Gene Expression Profiling
  • Gastrointestinal Tract
  • Feeding Behavior