Skip to main content
Journal cover image

Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes.

Publication ,  Journal Article
Zhong, Y; Bellamkonda, RV
Published in: Brain research
May 2007

Glial scar formation around implanted silicon neural probes compromises their ability to facilitate long-term recordings. One approach to modulate the tissue reaction around implanted probes in the brain is to develop probe coatings that locally release anti-inflammatory drugs. In this study, we developed a nitrocellulose-based coating for the local delivery of the anti-inflammatory drug dexamethasone (DEX). Silicon neural probes with and without nitrocellulose-DEX coatings were implanted into rat brains, and inflammatory response was evaluated 1 week and 4 weeks post implantation. DEX coatings significantly reduced the reactivity of microglia and macrophages 1 week post implantation as evidenced by ED1 immunostaining. CS56 staining demonstrated that DEX treatment significantly reduced chondroitin sulfate proteoglycan (CSPG) expression 1 week post implantation. Both at 1-week and at 4-week time points, GFAP staining for reactive astrocytes and neurofilament (NF) staining revealed that local DEX treatment significantly attenuated astroglial response and reduced neuronal loss in the vicinity of the probes. Weak ED1, neurocan, and NG2-positive signal was detected 4 weeks post implantation for both coated and uncoated probes, suggesting a stabilization of the inflammatory response over time in this implant model. In conclusion, this study demonstrates that the nitrocellulose-DEX coating can effectively attenuate the inflammatory response to the implanted neural probes, and reduce neuronal loss in the vicinity of the coated probes. Thus anti-inflammatory probe coatings may represent a promising approach to attenuate astroglial scar and reduce neural loss around implanted neural probes.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Brain research

DOI

EISSN

1872-6240

ISSN

0006-8993

Publication Date

May 2007

Volume

1148

Start / End Page

15 / 27

Related Subject Headings

  • Treatment Outcome
  • Rats, Sprague-Dawley
  • Rats
  • Proteoglycans
  • Neurology & Neurosurgery
  • Neurofilament Proteins
  • Neurocan
  • Nerve Tissue Proteins
  • Nerve Degeneration
  • Microglia
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Zhong, Y., & Bellamkonda, R. V. (2007). Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Research, 1148, 15–27. https://doi.org/10.1016/j.brainres.2007.02.024
Zhong, Yinghui, and Ravi V. Bellamkonda. “Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes.Brain Research 1148 (May 2007): 15–27. https://doi.org/10.1016/j.brainres.2007.02.024.
Zhong, Yinghui, and Ravi V. Bellamkonda. “Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes.Brain Research, vol. 1148, May 2007, pp. 15–27. Epmc, doi:10.1016/j.brainres.2007.02.024.
Journal cover image

Published In

Brain research

DOI

EISSN

1872-6240

ISSN

0006-8993

Publication Date

May 2007

Volume

1148

Start / End Page

15 / 27

Related Subject Headings

  • Treatment Outcome
  • Rats, Sprague-Dawley
  • Rats
  • Proteoglycans
  • Neurology & Neurosurgery
  • Neurofilament Proteins
  • Neurocan
  • Nerve Tissue Proteins
  • Nerve Degeneration
  • Microglia