Pitaya-like microspheres derived from Prussian blue analogues as ultralong-life anodes for lithium storage
To alleviate the capacity degradation of conventional anode materials caused by serious volume expansion and particle aggregation for lithium-ion batteries (LIBs), considerable attention has been devoted to the rational design and synthesis of novel anode architectures. Herein, we report an effective fabrication strategy to implant well-distributed carbide nanoparticles into spherical porous carbon frameworks to form pitaya-like microspheres. Benefiting from their unique components and architecture features, the as-synthesized pitaya-like microspheres can effectively buffer the volume change and prevent aggregation of Co
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 4016 Materials engineering
- 4004 Chemical engineering
- 3403 Macromolecular and materials chemistry
- 0915 Interdisciplinary Engineering
- 0912 Materials Engineering
- 0303 Macromolecular and Materials Chemistry
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 4016 Materials engineering
- 4004 Chemical engineering
- 3403 Macromolecular and materials chemistry
- 0915 Interdisciplinary Engineering
- 0912 Materials Engineering
- 0303 Macromolecular and Materials Chemistry