Skip to main content

TU-C-18C-01: Medical Physics 1.0 to 2.0: Introduction and Panel Discussion.

Publication ,  Journal Article
Samei, E; Pfeiffer, D; Frey, G; Krupinski, E; Pizzutiello, R; Carson, P; Mahesh, M; Hangiandreou, N; Jordan, D; Dixon, R
Published in: Med Phys
June 2014

Medical Physics 2.0, a new frontier in clinical imaging physics: Diagnostic imaging has always been a technological highlight of modern medicine. Imaging systems, with their ever-expanding advancement in terms of technology and application, increasingly require skilled expertise to understand the delicacy of their operation, monitor their performance, design their effective use, and ensure their overall quality and safety, scientifically and in quantitative terms. Physicists can play a crucial role in that process. But that role has largely remained a severely untapped resource. Many imaging centers fail to appreciate this potential, with medical physics groups either nonexistent or highly understaffed and their services poorly integrated into the patient care process. As a field, we have yet to define and enact how the clinical physicist can engage as an active, effective, and integral member of the clinical team, and how the services that she/he provides can be financially accounted for. Physicists do and will always contribute to research and development. However, their indispensible contribution to clinical imaging operations is something that has not been adequately established. That, in conjunction with new realities of healthcare practice, indicates a growing need to establish an updated approach to clinical medical imaging physics. This presentation aims to describe a vision as how clinical imaging physics can expand beyond traditional insular models of inspection and acceptance testing, oriented toward compliance, towards team-based models of operational engagement addressing topics such as new non-classical challenges of new technologies, quantitative imaging, and operational optimization. The Medical Physics 2.0 paradigm extends clinical medical physics from isolated characterization of inherent properties of the equipment to effective use of the equipment and to retrospective evaluation of clinical performance. This is an existential transition of the field that speaks to the new paradigms of value-based and evidence-based medicine, comparative effectiveness, and meaningful use. The panel discussion that follows includes prominent practitioners, thinkers, and leaders that would lead the discussion on how Medical Physics 2.0 can be actualized. Topics of discussion will include the administrative, financial, regulatory, and accreditation requirements of the new paradigm, effective models of practice, and the steps that we need to take to make MP 2.0 a reality. LEARNING OBJECTIVES: 1. To understand the new paradigm of clinical medical physics practice extending from traditional insular models of compliance towards teambased models of operational engagement. 2. To understand how clinical physics can most effectively contribute to clinical care. 3. Learn to identify strengths and weaknesses in studies designed to measure the effect of low doses of ionizing radiation 4. To recognize the impediments to Medical Physics 2.0 paradigm.

Duke Scholars

Published In

Med Phys

DOI

ISSN

0094-2405

Publication Date

June 2014

Volume

41

Issue

6

Start / End Page

461 / 462

Location

United States

Related Subject Headings

  • Nuclear Medicine & Medical Imaging
  • 5105 Medical and biological physics
  • 4003 Biomedical engineering
  • 1112 Oncology and Carcinogenesis
  • 0903 Biomedical Engineering
  • 0299 Other Physical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Samei, E., Pfeiffer, D., Frey, G., Krupinski, E., Pizzutiello, R., Carson, P., … Dixon, R. (2014). TU-C-18C-01: Medical Physics 1.0 to 2.0: Introduction and Panel Discussion. Med Phys, 41(6), 461–462. https://doi.org/10.1118/1.4889289
Samei, E., D. Pfeiffer, G. Frey, E. Krupinski, R. Pizzutiello, P. Carson, M. Mahesh, N. Hangiandreou, D. Jordan, and R. Dixon. “TU-C-18C-01: Medical Physics 1.0 to 2.0: Introduction and Panel Discussion.Med Phys 41, no. 6 (June 2014): 461–62. https://doi.org/10.1118/1.4889289.
Samei E, Pfeiffer D, Frey G, Krupinski E, Pizzutiello R, Carson P, et al. TU-C-18C-01: Medical Physics 1.0 to 2.0: Introduction and Panel Discussion. Med Phys. 2014 Jun;41(6):461–2.
Samei, E., et al. “TU-C-18C-01: Medical Physics 1.0 to 2.0: Introduction and Panel Discussion.Med Phys, vol. 41, no. 6, June 2014, pp. 461–62. Pubmed, doi:10.1118/1.4889289.
Samei E, Pfeiffer D, Frey G, Krupinski E, Pizzutiello R, Carson P, Mahesh M, Hangiandreou N, Jordan D, Dixon R. TU-C-18C-01: Medical Physics 1.0 to 2.0: Introduction and Panel Discussion. Med Phys. 2014 Jun;41(6):461–462.

Published In

Med Phys

DOI

ISSN

0094-2405

Publication Date

June 2014

Volume

41

Issue

6

Start / End Page

461 / 462

Location

United States

Related Subject Headings

  • Nuclear Medicine & Medical Imaging
  • 5105 Medical and biological physics
  • 4003 Biomedical engineering
  • 1112 Oncology and Carcinogenesis
  • 0903 Biomedical Engineering
  • 0299 Other Physical Sciences