MO-E-17A-02: Incorporation of Contrast Medium Dynamics in Anthropomorphic Phantoms: The Advent of 5D XCAT Models.
PURPOSE: To develop a unique method to incorporate the dynamics of contrast-medium propagation into the anthropomorphic phantom, to generate a five-dimensional (5D) patient model for multimodality imaging studies. METHODS: A compartmental model of blood circulation network within the body was embodied into an extended cardiac-torso (4D-XCAT) patient model. To do so, a computational physiologic model of the human cardiovascular system was developed which includes a series of compartments representing heart, vessels, and organs. Patient-specific cardiac output and blood volume were used as inputs influenced by the weight, height, age, and gender of the patient's model. For a given injection protocol and given XCAT model, the contrast-medium transmission within the body was described by a series of mass balance differential equations, the solutions to which provided the contrast enhancement-time curves for each organ; thereby defining the tissue materials including the contrastmedium within the XCAT model. A library of time-dependent organ materials was then defined. Each organ in each voxelized 4D-XCAT phantom was assigned to a corresponding time-varying material to create the 5D-XCAT phantom in which the fifth dimension is blood/contrast-medium within the temporal domain. RESULTS: The model effectively predicts the time-varying concentration behavior of various contrast-medium administration in each organ for different patient models as function of patient size (weight/height) and different injection protocol factors (injection rate and pattern, iodine concentration or volume). The contrast enhanced XCAT patient models was developed based on the concentration of iodine as a function of time after injection. CONCLUSION: Majority of medical imaging systems take advantage of contrast-medium administration in terms of better image quality, the effect of which was ignored in previous optimization studies. The study enables a comprehensive optimization of contrast administration both in terms of image quality and radiation dose, and can be used in different modalities such as CT, MRI, and ultrasound.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Nuclear Medicine & Medical Imaging
- 5105 Medical and biological physics
- 4003 Biomedical engineering
- 1112 Oncology and Carcinogenesis
- 0903 Biomedical Engineering
- 0299 Other Physical Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Nuclear Medicine & Medical Imaging
- 5105 Medical and biological physics
- 4003 Biomedical engineering
- 1112 Oncology and Carcinogenesis
- 0903 Biomedical Engineering
- 0299 Other Physical Sciences