Skip to main content
Journal cover image

Computational fluid dynamics of left ventricular ejection.

Publication ,  Journal Article
Georgiadis, JG; Wang, M; Pasipoularides, A
Published in: Ann Biomed Eng
1992

The present investigation addresses the effects of simple geometric variations on intraventricular ejection dynamics, by methods from computational fluid dynamics. It is an early step in incorporating more and more relevant characteristics of the ejection process, such as a continuously changing irregular geometry, in numerical simulations. We consider the effects of varying chamber eccentricities and outflow valve orifice-to-inner surface area ratios on instantaneous ejection gradients along the axis of symmetry of the left ventricle. The equation of motion for the streamfunction was discretized and solved iteratively with specified boundary conditions on a boundary-fitted adaptive grid, using an alternating-direction-implicit (ADI) algorithm. The unsteady aspects of the ejection process were subsequently introduced into the numerical simulation. It was shown that for given chamber volume and outflow orifice area, higher chamber eccentricities require higher ejection pressure gradients for the same velocity and local acceleration values at the aortic anulus than more spherical shapes. This finding is referable to the rise in local acceleration effects across the outflow axis. This is to be contrasted with the case of outflow orifice stenosis, in which it was shown that it is the convective acceleration effects that are intensified strongly.

Duke Scholars

Published In

Ann Biomed Eng

DOI

ISSN

0090-6964

Publication Date

1992

Volume

20

Issue

1

Start / End Page

81 / 97

Location

United States

Related Subject Headings

  • Ventricular Function, Left
  • Stroke Volume
  • Stress, Mechanical
  • Models, Cardiovascular
  • Hemodynamics
  • Biomedical Engineering
  • Algorithms
  • 11 Medical and Health Sciences
  • 09 Engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Georgiadis, J. G., Wang, M., & Pasipoularides, A. (1992). Computational fluid dynamics of left ventricular ejection. Ann Biomed Eng, 20(1), 81–97. https://doi.org/10.1007/BF02368507
Georgiadis, J. G., M. Wang, and A. Pasipoularides. “Computational fluid dynamics of left ventricular ejection.Ann Biomed Eng 20, no. 1 (1992): 81–97. https://doi.org/10.1007/BF02368507.
Georgiadis JG, Wang M, Pasipoularides A. Computational fluid dynamics of left ventricular ejection. Ann Biomed Eng. 1992;20(1):81–97.
Georgiadis, J. G., et al. “Computational fluid dynamics of left ventricular ejection.Ann Biomed Eng, vol. 20, no. 1, 1992, pp. 81–97. Pubmed, doi:10.1007/BF02368507.
Georgiadis JG, Wang M, Pasipoularides A. Computational fluid dynamics of left ventricular ejection. Ann Biomed Eng. 1992;20(1):81–97.
Journal cover image

Published In

Ann Biomed Eng

DOI

ISSN

0090-6964

Publication Date

1992

Volume

20

Issue

1

Start / End Page

81 / 97

Location

United States

Related Subject Headings

  • Ventricular Function, Left
  • Stroke Volume
  • Stress, Mechanical
  • Models, Cardiovascular
  • Hemodynamics
  • Biomedical Engineering
  • Algorithms
  • 11 Medical and Health Sciences
  • 09 Engineering