Skip to main content

Recovering Nonisothermal Physical Aging Shift Factors Via Continuous Test Data: Theory and Experimental Results

Publication ,  Journal Article
Bradshaw, RD; Brinson, LC
Published in: Journal of Engineering Materials and Technology
July 1, 1997

For isothermal physical aging, a few simple tests to characterize the aging shift factors allow reasonable prediction of the mechanical response. In this paper, a new technique is developed to extract aging shift factors from creep data during a nonisothermal history. Previous methods have generated discrete experimental shift factors by a series of short-term creep tests, in which the load portion alone is used for evaluation; this is particularly time consuming for nonisothermal histories, since many data points (requiring several tests) may be needed for an adequate characterization of the response. This paper presents a new continuous shift factor (CSF) method, based on the validity of effective time theory, which generates a continuous experimental shift factor curve from a single test. Results are presented for this method when applied to a polyimide/carbon fiber composite material tested in shear under temperature jump conditions; this nonisothermal aging data for a polymer matrix composite is shown to exhibit similar response to that of homogeneous polymers. The new CSF technique will be useful in the development of models to predict the shift factor due to coupled aging and thermal history.

Duke Scholars

Published In

Journal of Engineering Materials and Technology

DOI

EISSN

1528-8889

ISSN

0094-4289

Publication Date

July 1, 1997

Volume

119

Issue

3

Start / End Page

233 / 241

Publisher

ASME International

Related Subject Headings

  • Materials
  • 4017 Mechanical engineering
  • 4016 Materials engineering
  • 0913 Mechanical Engineering
  • 0912 Materials Engineering
  • 0910 Manufacturing Engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Bradshaw, R. D., & Brinson, L. C. (1997). Recovering Nonisothermal Physical Aging Shift Factors Via Continuous Test Data: Theory and Experimental Results. Journal of Engineering Materials and Technology, 119(3), 233–241. https://doi.org/10.1115/1.2812250
Bradshaw, R. D., and L. C. Brinson. “Recovering Nonisothermal Physical Aging Shift Factors Via Continuous Test Data: Theory and Experimental Results.” Journal of Engineering Materials and Technology 119, no. 3 (July 1, 1997): 233–41. https://doi.org/10.1115/1.2812250.
Bradshaw RD, Brinson LC. Recovering Nonisothermal Physical Aging Shift Factors Via Continuous Test Data: Theory and Experimental Results. Journal of Engineering Materials and Technology. 1997 Jul 1;119(3):233–41.
Bradshaw, R. D., and L. C. Brinson. “Recovering Nonisothermal Physical Aging Shift Factors Via Continuous Test Data: Theory and Experimental Results.” Journal of Engineering Materials and Technology, vol. 119, no. 3, ASME International, July 1997, pp. 233–41. Crossref, doi:10.1115/1.2812250.
Bradshaw RD, Brinson LC. Recovering Nonisothermal Physical Aging Shift Factors Via Continuous Test Data: Theory and Experimental Results. Journal of Engineering Materials and Technology. ASME International; 1997 Jul 1;119(3):233–241.

Published In

Journal of Engineering Materials and Technology

DOI

EISSN

1528-8889

ISSN

0094-4289

Publication Date

July 1, 1997

Volume

119

Issue

3

Start / End Page

233 / 241

Publisher

ASME International

Related Subject Headings

  • Materials
  • 4017 Mechanical engineering
  • 4016 Materials engineering
  • 0913 Mechanical Engineering
  • 0912 Materials Engineering
  • 0910 Manufacturing Engineering