Skip to main content

Spectral distribution of random matrices from binary linear block codes

Publication ,  Journal Article
Babadi, B; Tarokh, V
Published in: IEEE Transactions on Information Theory
June 1, 2011

Let C be a binary linear block code of length n, dimension k and minimum Hamming distance d over GF(2)n. Let d⊥ denote the minimum Hamming distance of the dual code of C over GF(2)n. Let εGF(2)n {-1,1}n be the component-wise mapping ε(vi):=(-1)vi, for v=(v1,v 2,vn)∈GF(2)n. Finally, for p

Duke Scholars

Published In

IEEE Transactions on Information Theory

DOI

ISSN

0018-9448

Publication Date

June 1, 2011

Volume

57

Issue

6

Start / End Page

3955 / 3962

Related Subject Headings

  • Networking & Telecommunications
  • 4613 Theory of computation
  • 4006 Communications engineering
  • 1005 Communications Technologies
  • 0906 Electrical and Electronic Engineering
  • 0801 Artificial Intelligence and Image Processing
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Babadi, B., & Tarokh, V. (2011). Spectral distribution of random matrices from binary linear block codes. IEEE Transactions on Information Theory, 57(6), 3955–3962. https://doi.org/10.1109/TIT.2011.2137330

Published In

IEEE Transactions on Information Theory

DOI

ISSN

0018-9448

Publication Date

June 1, 2011

Volume

57

Issue

6

Start / End Page

3955 / 3962

Related Subject Headings

  • Networking & Telecommunications
  • 4613 Theory of computation
  • 4006 Communications engineering
  • 1005 Communications Technologies
  • 0906 Electrical and Electronic Engineering
  • 0801 Artificial Intelligence and Image Processing