Skip to main content

On the trellis complexity of the densest lattice packings in ℝn

Publication ,  Journal Article
Blake, IF; Tarokh, V
Published in: SIAM Journal on Discrete Mathematics
January 1, 1996

An inequality relating the trellis complexity of lattices to their dimension and Hermite parameter is established. Using this inequality, a conjecture of Forney is proved indicating that the trellis complexity of the densest lattice packings in ℝn grows exponentially as a function of their coding gain.

Duke Scholars

Published In

SIAM Journal on Discrete Mathematics

DOI

ISSN

0895-4801

Publication Date

January 1, 1996

Volume

9

Issue

4

Start / End Page

597 / 601

Related Subject Headings

  • Computation Theory & Mathematics
  • 4904 Pure mathematics
  • 4901 Applied mathematics
  • 4613 Theory of computation
  • 0802 Computation Theory and Mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Blake, I. F., & Tarokh, V. (1996). On the trellis complexity of the densest lattice packings in ℝn. SIAM Journal on Discrete Mathematics, 9(4), 597–601. https://doi.org/10.1137/S0895480195283348
Blake, I. F., and V. Tarokh. “On the trellis complexity of the densest lattice packings in ℝn.” SIAM Journal on Discrete Mathematics 9, no. 4 (January 1, 1996): 597–601. https://doi.org/10.1137/S0895480195283348.
Blake IF, Tarokh V. On the trellis complexity of the densest lattice packings in ℝn. SIAM Journal on Discrete Mathematics. 1996 Jan 1;9(4):597–601.
Blake, I. F., and V. Tarokh. “On the trellis complexity of the densest lattice packings in ℝn.” SIAM Journal on Discrete Mathematics, vol. 9, no. 4, Jan. 1996, pp. 597–601. Scopus, doi:10.1137/S0895480195283348.
Blake IF, Tarokh V. On the trellis complexity of the densest lattice packings in ℝn. SIAM Journal on Discrete Mathematics. 1996 Jan 1;9(4):597–601.

Published In

SIAM Journal on Discrete Mathematics

DOI

ISSN

0895-4801

Publication Date

January 1, 1996

Volume

9

Issue

4

Start / End Page

597 / 601

Related Subject Headings

  • Computation Theory & Mathematics
  • 4904 Pure mathematics
  • 4901 Applied mathematics
  • 4613 Theory of computation
  • 0802 Computation Theory and Mathematics
  • 0101 Pure Mathematics