A coding theory approach to noisy compressive sensing using low density frames
We consider the compressive sensing of a sparse or compressible signal x ∈ R M. We explicitly construct a class of measurement matrices inspired by coding theory, referred to as low density frames, and develop decoding algorithms that produce an accurate estimate x̂ even in the presence of additive noise. Low density frames are sparse matrices and have small storage requirements. Our decoding algorithms can be implemented in O(Md2u) complexity, where dv is the left degree of the underlying bipartite graph. Simulation results are provided, demonstrating that our approach outperforms state-of-the-art recovery algorithms for numerous cases of interest. In particular, for Gaussian sparse signals and Gaussian noise, we are within 2-dB range of the theoretical lower bound in most cases. © 2011 IEEE.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Networking & Telecommunications
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Networking & Telecommunications