Existence of optimal prefix codes for infinite source alphabets
Publication
, Journal Article
Linder, T; Tarokh, V; Zeger, K
Published in: IEEE Transactions on Information Theory
December 1, 1997
It is proven that for every random variable with a countably infinite set of outcomes and finite entropy there exists an optimal prefix code which can be constructed from Huffman codes for truncated versions of the random variable, and that the average lengths of any sequence of Huffman codes for the truncated versions converge to that of the optimal code. Also, it is shown that every optimal infinite code achieves Kraft's inequality with equality. © 1997 IEEE.
Duke Scholars
Published In
IEEE Transactions on Information Theory
DOI
ISSN
0018-9448
Publication Date
December 1, 1997
Volume
43
Issue
6
Start / End Page
2026 / 2028
Related Subject Headings
- Networking & Telecommunications
- 4613 Theory of computation
- 4006 Communications engineering
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0801 Artificial Intelligence and Image Processing
Citation
APA
Chicago
ICMJE
MLA
NLM
Linder, T., Tarokh, V., & Zeger, K. (1997). Existence of optimal prefix codes for infinite source alphabets. IEEE Transactions on Information Theory, 43(6), 2026–2028. https://doi.org/10.1109/18.641571
Linder, T., V. Tarokh, and K. Zeger. “Existence of optimal prefix codes for infinite source alphabets.” IEEE Transactions on Information Theory 43, no. 6 (December 1, 1997): 2026–28. https://doi.org/10.1109/18.641571.
Linder T, Tarokh V, Zeger K. Existence of optimal prefix codes for infinite source alphabets. IEEE Transactions on Information Theory. 1997 Dec 1;43(6):2026–8.
Linder, T., et al. “Existence of optimal prefix codes for infinite source alphabets.” IEEE Transactions on Information Theory, vol. 43, no. 6, Dec. 1997, pp. 2026–28. Scopus, doi:10.1109/18.641571.
Linder T, Tarokh V, Zeger K. Existence of optimal prefix codes for infinite source alphabets. IEEE Transactions on Information Theory. 1997 Dec 1;43(6):2026–2028.
Published In
IEEE Transactions on Information Theory
DOI
ISSN
0018-9448
Publication Date
December 1, 1997
Volume
43
Issue
6
Start / End Page
2026 / 2028
Related Subject Headings
- Networking & Telecommunications
- 4613 Theory of computation
- 4006 Communications engineering
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0801 Artificial Intelligence and Image Processing