Skip to main content

Specificity of human bactericidal antibodies against PorA P1.7,16 induced with a hexavalent meningococcal outer membrane vesicle vaccine.

Publication ,  Journal Article
van der Voort, ER; van der Ley, P; van der Biezen, J; George, S; Tunnela, O; van Dijken, H; Kuipers, B; Poolman, J
Published in: Infect Immun
July 1996

A set of isogenic strains was constructed from the meningococcal reference strain H44/76 (B:15:P1.7,16) which differed only in their outer membrane protein (OMP) compositions. First, three isogenic strains lacking the expression of either class 3 (PorB) or class 4 (RmpM) OMP or both were obtained. Second, three isogenic class 1 OMP loop-deficient strains of H44/76 lacking the predicted loop 1 or 4 or both of class 1 OMP (PorA) were obtained. Third, three isogenic class 1 OMP strains which differed by point mutations in the predicted loop 4 of subtype P1.16 were constructed. Strains were constructed through transformation with gene constructs made in Escherichia coli and their homologous recombination into the meningococcal chromosome. This study describes the contribution of one of the six class 1 OMPs, PorA P1.7,16, in the development of bactericidal antibodies after a single immunization of adult volunteers with 50 or 100 micrograms of protein within a hexavalent PorA outer membrane vesicle vaccine. PorA-, PorB-, and RpmM-deficient isogenic strains were used to define the human immune response against PorA. The loop-deficient isogenic strains were used to define the contribution of loops 1 and 4 of PorA in the development of bactericidal anti-PorA antibodies. The isogenic strains carrying a point mutation in loop 4 were used to study the cross-reactivity of the induced bactericidal antibodies against target strains showing microheterogeneity. The results indicate that a single immunization with the hexavalent PorA vaccine induced a dose-dependent bactericidal immune response, which is directed mainly against PorA. The epitope specificity of antibodies is directed mostly against loop 1, although loop 4 and as-yet-unidentified epitopes of PorA P1.7,16 are also involved.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Infect Immun

DOI

ISSN

0019-9567

Publication Date

July 1996

Volume

64

Issue

7

Start / End Page

2745 / 2751

Location

United States

Related Subject Headings

  • Vaccines, Synthetic
  • Transformation, Genetic
  • Restriction Mapping
  • Porins
  • Point Mutation
  • Plasmids
  • Neisseria meningitidis
  • Molecular Sequence Data
  • Microbiology
  • Meningitis, Meningococcal
 

Citation

APA
Chicago
ICMJE
MLA
NLM
van der Voort, E. R., van der Ley, P., van der Biezen, J., George, S., Tunnela, O., van Dijken, H., … Poolman, J. (1996). Specificity of human bactericidal antibodies against PorA P1.7,16 induced with a hexavalent meningococcal outer membrane vesicle vaccine. Infect Immun, 64(7), 2745–2751. https://doi.org/10.1128/iai.64.7.2745-2751.1996
Voort, E. R. van der, P. van der Ley, J. van der Biezen, S. George, O. Tunnela, H. van Dijken, B. Kuipers, and J. Poolman. “Specificity of human bactericidal antibodies against PorA P1.7,16 induced with a hexavalent meningococcal outer membrane vesicle vaccine.Infect Immun 64, no. 7 (July 1996): 2745–51. https://doi.org/10.1128/iai.64.7.2745-2751.1996.
van der Voort ER, van der Ley P, van der Biezen J, George S, Tunnela O, van Dijken H, et al. Specificity of human bactericidal antibodies against PorA P1.7,16 induced with a hexavalent meningococcal outer membrane vesicle vaccine. Infect Immun. 1996 Jul;64(7):2745–51.
van der Voort, E. R., et al. “Specificity of human bactericidal antibodies against PorA P1.7,16 induced with a hexavalent meningococcal outer membrane vesicle vaccine.Infect Immun, vol. 64, no. 7, July 1996, pp. 2745–51. Pubmed, doi:10.1128/iai.64.7.2745-2751.1996.
van der Voort ER, van der Ley P, van der Biezen J, George S, Tunnela O, van Dijken H, Kuipers B, Poolman J. Specificity of human bactericidal antibodies against PorA P1.7,16 induced with a hexavalent meningococcal outer membrane vesicle vaccine. Infect Immun. 1996 Jul;64(7):2745–2751.

Published In

Infect Immun

DOI

ISSN

0019-9567

Publication Date

July 1996

Volume

64

Issue

7

Start / End Page

2745 / 2751

Location

United States

Related Subject Headings

  • Vaccines, Synthetic
  • Transformation, Genetic
  • Restriction Mapping
  • Porins
  • Point Mutation
  • Plasmids
  • Neisseria meningitidis
  • Molecular Sequence Data
  • Microbiology
  • Meningitis, Meningococcal