Genome-Wide Impact of Androgen Receptor Trapped clone-27 Loss on Androgen-Regulated Transcription in Prostate Cancer Cells
Publication
, Journal Article
Nwachukwu, JC; Mita, P; Ruoff, R; Ha, S; Wang, Q; Huang, SJ; Taneja, SS; Brown, M; Gerald, WL; Garabedian, MJ; Logan, SK
Published in: Cancer Research
The androgen receptor (AR) directs diverse biological processes through interaction with coregulators such as AR trapped clone-27 (ART-27). Our results show that ART-27 is recruited to AR-binding sites by chromatin immunoprecipitation analysis. In addition, the effect of ART-27 on genome-wide transcription was examined. The studies indicate that loss of ART-27 enhances expression of many androgen-regulated genes, suggesting that ART-27 inhibits gene expression. Surprisingly, classes of genes that are up-regulated upon ART-27 depletion include regulators of DNA damage checkpoint and cell cycle progression, suggesting that ART-27 functions to keep expression levels of these genes low. Consistent with this idea, stable reduction of ART-27 by short-hairpin RNA enhances LNCaP cell proliferation compared with control cells. The effect of ART-27 loss was also examined in response to the antiandrogen bicalutamide. Unexpectedly, cells treated with ART-27 siRNA no longer exhibited gene repression in response to bicalutamide. To examine ART-27 loss in prostate cancer progression, immunohistochemistry was conducted on a tissue array containing samples from primary tumors of individuals who were clinically followed and later shown to have either recurrent or nonrecurrent disease. Comparison of ART-27 and AR staining indicated that nuclear ART-27 expression was lost in the majority of AR-positive recurrent prostate cancers. Our studies show that reduction of ART-27 protein levels in prostate cancer may facilitate antiandrogen-resistant disease. [Cancer Res 2009;69(7):3140–7]
Altmetric Attention Stats
Dimensions Citation Stats