Scalable model selection for belief networks
We propose a scalable algorithm for model selection in sigmoid belief networks (SBNs), based on the factorized asymptotic Bayesian (FAB) framework. We derive the corresponding generalized factorized information criterion (gFIC) for the SBN, which is proven to be statistically consistent with the marginal log-likelihood. To capture the dependencies within hidden variables in SBNs, a recognition network is employed to model the variational distribution. The resulting algorithm, which we call FABIA, can simultaneously execute both model selection and inference by maximizing the lower bound of gFIC. On both synthetic and real data, our experiments suggest that FABIA, when compared to state-of-the-art algorithms for learning SBNs, (i) produces a more concise model, thus enabling faster testing; (ii) improves predictive performance; (iii) accelerates convergence; and (iv) prevents overfitting.
Duke Scholars
Published In
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- 4611 Machine learning
- 1702 Cognitive Sciences
- 1701 Psychology
Citation
Published In
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- 4611 Machine learning
- 1702 Cognitive Sciences
- 1701 Psychology