Skip to main content
Journal cover image

Postnatal Erythropoietin Mitigates Impaired Cerebral Cortical Development Following Subplate Loss from Prenatal Hypoxia-Ischemia.

Publication ,  Journal Article
Jantzie, LL; Corbett, CJ; Firl, DJ; Robinson, S
Published in: Cerebral cortex (New York, N.Y. : 1991)
September 2015

Preterm birth impacts brain development and leads to chronic deficits including cognitive delay, behavioral problems, and epilepsy. Premature loss of the subplate, a transient subcortical layer that guides development of the cerebral cortex and axonal refinement, has been implicated in these neurological disorders. Subplate neurons influence postnatal upregulation of the potassium chloride co-transporter KCC2 and maturation of γ-amino-butyric acid A receptor (GABAAR) subunits. We hypothesized that prenatal transient systemic hypoxia-ischemia (TSHI) in Sprague-Dawley rats that mimic brain injury from extreme prematurity in humans would cause premature subplate loss and affect cortical layer IV development. Further, we predicted that the neuroprotective agent erythropoietin (EPO) could attenuate the injury. Prenatal TSHI induced subplate neuronal loss via apoptosis. TSHI impaired cortical layer IV postnatal upregulation of KCC2 and GABAAR subunits, and postnatal EPO treatment mitigated the loss (n ≥ 8). To specifically address how subplate loss affects cortical development, we used in vitro mechanical subplate ablation in slice cultures (n ≥ 3) and found EPO treatment attenuates KCC2 loss. Together, these results show that subplate loss contributes to impaired cerebral development, and EPO treatment diminishes the damage. Limitation of premature subplate loss and the resultant impaired cortical development may minimize cerebral deficits suffered by extremely preterm infants.

Duke Scholars

Published In

Cerebral cortex (New York, N.Y. : 1991)

DOI

EISSN

1460-2199

ISSN

1047-3211

Publication Date

September 2015

Volume

25

Issue

9

Start / End Page

2683 / 2695

Related Subject Headings

  • Symporters
  • Receptors, GABA-A
  • Rats, Sprague-Dawley
  • Rats
  • Nuclear Receptor Subfamily 4, Group A, Member 2
  • Motor Activity
  • K Cl- Cotransporters
  • In Vitro Techniques
  • Hypoxia-Ischemia, Brain
  • Gene Expression Regulation, Developmental
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Jantzie, L. L., Corbett, C. J., Firl, D. J., & Robinson, S. (2015). Postnatal Erythropoietin Mitigates Impaired Cerebral Cortical Development Following Subplate Loss from Prenatal Hypoxia-Ischemia. Cerebral Cortex (New York, N.Y. : 1991), 25(9), 2683–2695. https://doi.org/10.1093/cercor/bhu066
Jantzie, Lauren L., Christopher J. Corbett, Daniel J. Firl, and Shenandoah Robinson. “Postnatal Erythropoietin Mitigates Impaired Cerebral Cortical Development Following Subplate Loss from Prenatal Hypoxia-Ischemia.Cerebral Cortex (New York, N.Y. : 1991) 25, no. 9 (September 2015): 2683–95. https://doi.org/10.1093/cercor/bhu066.
Jantzie LL, Corbett CJ, Firl DJ, Robinson S. Postnatal Erythropoietin Mitigates Impaired Cerebral Cortical Development Following Subplate Loss from Prenatal Hypoxia-Ischemia. Cerebral cortex (New York, NY : 1991). 2015 Sep;25(9):2683–95.
Jantzie, Lauren L., et al. “Postnatal Erythropoietin Mitigates Impaired Cerebral Cortical Development Following Subplate Loss from Prenatal Hypoxia-Ischemia.Cerebral Cortex (New York, N.Y. : 1991), vol. 25, no. 9, Sept. 2015, pp. 2683–95. Epmc, doi:10.1093/cercor/bhu066.
Jantzie LL, Corbett CJ, Firl DJ, Robinson S. Postnatal Erythropoietin Mitigates Impaired Cerebral Cortical Development Following Subplate Loss from Prenatal Hypoxia-Ischemia. Cerebral cortex (New York, NY : 1991). 2015 Sep;25(9):2683–2695.
Journal cover image

Published In

Cerebral cortex (New York, N.Y. : 1991)

DOI

EISSN

1460-2199

ISSN

1047-3211

Publication Date

September 2015

Volume

25

Issue

9

Start / End Page

2683 / 2695

Related Subject Headings

  • Symporters
  • Receptors, GABA-A
  • Rats, Sprague-Dawley
  • Rats
  • Nuclear Receptor Subfamily 4, Group A, Member 2
  • Motor Activity
  • K Cl- Cotransporters
  • In Vitro Techniques
  • Hypoxia-Ischemia, Brain
  • Gene Expression Regulation, Developmental