Networking low-power energy harvesting devices: Measurements and algorithms
Recent advances in energy harvesting materials and ultra-low-power communications will soon enable the realization of networks composed of energy harvesting devices. These devices will operate using very low ambient energy, such as energy harvested from indoor lights. We focus on characterizing the light energy availability in indoor environments and on developing energy allocation algorithms for energy harvesting devices. First, we present results of our long-term indoor radiant energy measurements, which provide important inputs required for algorithm and system design (e.g., determining the required battery sizes). Then, we focus on algorithm development, which requires nontraditional approaches, since energy harvesting shifts the nature of energy-aware protocols from minimizing energy expenditure to optimizing it. Moreover, in many cases, different energy storage types (rechargeable battery and a capacitor) require different algorithms. We develop algorithms for calculating time fair energy allocation in systems with deterministic energy inputs, as well as in systems where energy inputs are stochastic. © 2013 IEEE.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Networking & Telecommunications
- 4606 Distributed computing and systems software
- 4604 Cybersecurity and privacy
- 4006 Communications engineering
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0805 Distributed Computing
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Networking & Telecommunications
- 4606 Distributed computing and systems software
- 4604 Cybersecurity and privacy
- 4006 Communications engineering
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0805 Distributed Computing