How reliable are texture measurements?
Robins, M; Solomon, J; Hoye, J; Abadi, E; Marin, D; Samei, E
Published in: Progress in Biomedical Optics and Imaging Proceedings of SPIE
The purpose of this study was to assess the bias (objectivity) and variability (robustness) of computed tomography (CT) texture features (internal heterogeneities) across a series of image acquisition settings and reconstruction algorithms. We simulated a series of CT images using a computational phantom with anatomically-informed texture. 288 clinically-relevant simulation conditions were generated representing three slice thicknesses (0.625, 1.25, 2.5 mm), four in-plane pixel sizes (0.4, 0.5, 0.7, 0.9 mm), three dose levels (CTDIvol = 1.90, 3.75, 7.50 mGy), and 8 reconstruction kernels. Each texture feature was sampled with 4 unique volumes of interest (VOIs) (244, 1953, 15625, 125000 mm3). Twenty-one statistical texture features were calculated and compared between the ground truth phantom (i.e., pre-imaging) and its corresponding post-imaging simulations. Metrics of comparison included (1) the percent relative difference (PRD) between the post-imaging simulation and the ground truth, and (2) the coefficient of variation (%COV) across simulated instances of texture features. The PRD and %COV ranged from -100% to 4500%, and 0.8% to 49%, respectively. PRD decreased with increased slice thickness, in-plane pixel size, and dose. The dynamic range of results indicate that image acquisition and reconstruction conditions (i.e., slice thicknesses, in-plane pixel sizes, dose levels, and reconstruction kernels) can lead to significant bias and variability in texture feature measurements.