Skip to main content
construction release_alert
Scholars@Duke will be undergoing maintenance April 11-15. Some features may be unavailable during this time.
cancel

Eco-evolutionary dynamics and collective dispersal: implications for salmon metapopulation robustness

Publication ,  Journal Article
Yeakel, JD; Gibert, JP; Westley, PAH; Moore, JW
September 21, 2017

The spatial dispersal of individuals is known to play an important role in the dynamics of populations, and is central to metapopulation theory. At the same time, local adaptation to environmental conditions creates a geographic mosaic of evolutionary forces, where the combined drivers of selection and gene flow interact. Although the dispersal of individuals from donor to recipient populations provides connections within the metapopulation, promoting demographic and evolutionary rescue, it may also introduce maladapted individuals into habitats host to different environmental conditions, potentially lowering the fitness of the recipient population. Here we explore a model of the eco-evolutionary dynamics between two populations connected by dispersal, where the productivity of each is defined by a trait complex that is subject to local selection. Although general in nature, our model is inspired by salmon metapopulations, where dispersal between populations is defined in terms of the straying rate, which has been shown to be density-dependent. The results of our model reveal that increased straying between evolving populations leads to alternative stable states, which has large and nonlinear effects on two measures of metapopulation robustness: the portfolio effect and the time to recovery following an induced disturbance. We show that intermediate levels of straying result in large gains in robustness, and that increased habitat heterogeneity promotes robustness when straying rates are low, and erodes robustness when straying rates are high. Finally, we show that density-dependent straying promotes robustness, particularly when the aggregate biomass is low and straying is correspondingly high, which has important ramifications for the conservation of salmon metapopulations facing both natural and anthropogenic disturbances.

Duke Scholars

Publication Date

September 21, 2017
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Yeakel, J. D., Gibert, J. P., Westley, P. A. H., & Moore, J. W. (2017). Eco-evolutionary dynamics and collective dispersal: implications for salmon metapopulation robustness.
Yeakel, Justin D., Jean P. Gibert, Peter A. H. Westley, and Jonathan W. Moore. “Eco-evolutionary dynamics and collective dispersal: implications for salmon metapopulation robustness,” September 21, 2017.

Publication Date

September 21, 2017