Skip to main content
Journal cover image

Oxidized lipid-mediated alterations in proteoglycan metabolism in cultured pulmonary endothelial cells.

Publication ,  Journal Article
Ramasamy, S; Lipke, DW; Boissonneault, GA; Guo, H; Hennig, B
Published in: Atherosclerosis
February 1996

Compared to cholesterol or linoleic acid (18:2), oxidized lipids such as cholestan-3 beta, 5 alpha, 6 beta-triol (triol) and hydroperoxy linoleic acid (HPODE) markedly impair endothelial barrier function in culture [Hennig and Boissonneault, 1987; Hennig et al. 1986]. Because proteoglycans contribute to vascular permeability properties, the effects of cholesterol and 18:2 and their oxidation products, triol and HPODE, on endothelial proteoglycan metabolism were determined. While cholesterol was without effect, a concentration-dependent decrease in cellular proteoglycans (measured by 35S incorporation) was observed after exposure to triol. Compared to control cultures, cholesterol reduced mRNA levels for the proteoglycans, perlecan and biglycan. Triol had a similar effect on biglycan but not an perlecan mRNA levels. Compared to 18:2, 1,3 and 5 microM HPODE depressed cellular proteoglycans. Perlecan mRNA levels were reduced more by HPODE when compared to 18:2. Biglycan mRNA levels were reduced by 3 microM, but not by 5 microM HPODE. These data demonstrate that oxidized lipids such as triol and HPODE can decrease cellular proteoglycan metabolism in endothelial monolayers and alter mRNA levels of major specific proteoglycans in a concentration-dependent manner. This may have implications in lipid-mediated disruption of endothelial barrier function and atherosclerosis.

Duke Scholars

Published In

Atherosclerosis

DOI

ISSN

0021-9150

Publication Date

February 1996

Volume

120

Issue

1-2

Start / End Page

199 / 208

Location

Ireland

Related Subject Headings

  • Swine
  • RNA, Messenger
  • Pulmonary Artery
  • Proteoglycans
  • Oxidative Stress
  • Oxidation-Reduction
  • Lipid Peroxidation
  • Linoleic Acids
  • Linoleic Acid
  • Heparitin Sulfate
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Ramasamy, S., Lipke, D. W., Boissonneault, G. A., Guo, H., & Hennig, B. (1996). Oxidized lipid-mediated alterations in proteoglycan metabolism in cultured pulmonary endothelial cells. Atherosclerosis, 120(1–2), 199–208. https://doi.org/10.1016/0021-9150(95)05702-1
Ramasamy, S., D. W. Lipke, G. A. Boissonneault, H. Guo, and B. Hennig. “Oxidized lipid-mediated alterations in proteoglycan metabolism in cultured pulmonary endothelial cells.Atherosclerosis 120, no. 1–2 (February 1996): 199–208. https://doi.org/10.1016/0021-9150(95)05702-1.
Ramasamy S, Lipke DW, Boissonneault GA, Guo H, Hennig B. Oxidized lipid-mediated alterations in proteoglycan metabolism in cultured pulmonary endothelial cells. Atherosclerosis. 1996 Feb;120(1–2):199–208.
Ramasamy, S., et al. “Oxidized lipid-mediated alterations in proteoglycan metabolism in cultured pulmonary endothelial cells.Atherosclerosis, vol. 120, no. 1–2, Feb. 1996, pp. 199–208. Pubmed, doi:10.1016/0021-9150(95)05702-1.
Ramasamy S, Lipke DW, Boissonneault GA, Guo H, Hennig B. Oxidized lipid-mediated alterations in proteoglycan metabolism in cultured pulmonary endothelial cells. Atherosclerosis. 1996 Feb;120(1–2):199–208.
Journal cover image

Published In

Atherosclerosis

DOI

ISSN

0021-9150

Publication Date

February 1996

Volume

120

Issue

1-2

Start / End Page

199 / 208

Location

Ireland

Related Subject Headings

  • Swine
  • RNA, Messenger
  • Pulmonary Artery
  • Proteoglycans
  • Oxidative Stress
  • Oxidation-Reduction
  • Lipid Peroxidation
  • Linoleic Acids
  • Linoleic Acid
  • Heparitin Sulfate