Skip to main content

Linearized Boltzmann-Langevin model for heavy quark transport in hot and dense QCD matter

Publication ,  Journal Article
Ke, W; Xu, Y; Bass, SA
Published in: Physical Review C
December 5, 2018

In relativistic heavy-ion collisions, the production of heavy quarks at large transverse momenta is strongly suppressed compared to proton-proton collisions. In addition, an unexpectedly large azimuthal anisotropy was observed for the emission of charmed hadrons in noncentral collisions. Both observations pose challenges to the theoretical understanding of the coupling between heavy quarks and the quark-gluon plasma produced in these collisions. Transport models for the evolution of heavy quarks in a QCD medium offer the opportunity to study these effects; two of the most successful approaches are based on the linearized Boltzmann transport equation and the Langevin equation. In this work, we develop a hybrid transport model that combines the strengths of both of these approaches: Heavy quarks scatter with medium partons using matrix-elements calculated in perturbative QCD, while between these discrete hard scatterings they evolve using a Langevin equation with empirical transport coefficients to capture the nonperturbative soft part of the interaction. With the hybrid transport model coupled to a state-of-the-art event-by-event bulk evolution model based on 2+1D relativistic viscous fluid dynamics, we study the azimuthal anisotropy and nuclear modification factor of heavy quarks in Pb+Pb collisions at s=5.02 TeV. The parameters related to heavy-flavor transport are calibrated using a Bayesian analysis comparing them to available D-meson and B-meson data at the Large Hadron Collider. Using the calibrated model, we study the implications on heavy-flavor transport properties and predict observables.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Physical Review C

DOI

EISSN

2469-9993

ISSN

2469-9985

Publication Date

December 5, 2018

Volume

98

Issue

6

Related Subject Headings

  • 5106 Nuclear and plasma physics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Ke, W., Xu, Y., & Bass, S. A. (2018). Linearized Boltzmann-Langevin model for heavy quark transport in hot and dense QCD matter. Physical Review C, 98(6). https://doi.org/10.1103/PhysRevC.98.064901
Ke, W., Y. Xu, and S. A. Bass. “Linearized Boltzmann-Langevin model for heavy quark transport in hot and dense QCD matter.” Physical Review C 98, no. 6 (December 5, 2018). https://doi.org/10.1103/PhysRevC.98.064901.
Ke, W., et al. “Linearized Boltzmann-Langevin model for heavy quark transport in hot and dense QCD matter.” Physical Review C, vol. 98, no. 6, Dec. 2018. Scopus, doi:10.1103/PhysRevC.98.064901.

Published In

Physical Review C

DOI

EISSN

2469-9993

ISSN

2469-9985

Publication Date

December 5, 2018

Volume

98

Issue

6

Related Subject Headings

  • 5106 Nuclear and plasma physics