Skip to main content
Journal cover image

Counter cross-flow evaporator geometries for supercritical organic Rankine cycles

Publication ,  Journal Article
Nejad, AH; Ekici, K; Sabau, AS; Bejan, A; Arimilli, RV
Published in: International Journal of Heat and Mass Transfer
June 1, 2019

With recent advancements in advanced manufacturing techniques, it is now possible to fabricate complex geometries that take advantage of well known principles of heat transfer. Therefore, unconventional configurations to enhance effectiveness beyond conventional designs can now be considered for practical application. Thermal performance and overall cost of a new design of heat exchangers in counter cross-flow configurations are studied using a simplified but accurate computational method. The new heat exchanger design was introduced and studied previously for a cross-flow configuration by Sabau et al. (2016, 2018). This new design concept uses multi-scale configurations with successive plenums for the working fluid. At the smallest scale the tubes are sized to be equal to the hydraulic entrance length of the inside fluid, in accord with constructal design. Results indicate that compared to the earlier cross-flow configuration, the counter cross-flow arrangement improves the thermal performance of the heat exchanger by as much as 17% and lowers the total cost by as much as 14%.

Duke Scholars

Published In

International Journal of Heat and Mass Transfer

DOI

ISSN

0017-9310

Publication Date

June 1, 2019

Volume

135

Start / End Page

425 / 435

Related Subject Headings

  • Mechanical Engineering & Transports
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 02 Physical Sciences
  • 01 Mathematical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Nejad, A. H., Ekici, K., Sabau, A. S., Bejan, A., & Arimilli, R. V. (2019). Counter cross-flow evaporator geometries for supercritical organic Rankine cycles. International Journal of Heat and Mass Transfer, 135, 425–435. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.134
Nejad, A. H., K. Ekici, A. S. Sabau, A. Bejan, and R. V. Arimilli. “Counter cross-flow evaporator geometries for supercritical organic Rankine cycles.” International Journal of Heat and Mass Transfer 135 (June 1, 2019): 425–35. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.134.
Nejad AH, Ekici K, Sabau AS, Bejan A, Arimilli RV. Counter cross-flow evaporator geometries for supercritical organic Rankine cycles. International Journal of Heat and Mass Transfer. 2019 Jun 1;135:425–35.
Nejad, A. H., et al. “Counter cross-flow evaporator geometries for supercritical organic Rankine cycles.” International Journal of Heat and Mass Transfer, vol. 135, June 2019, pp. 425–35. Scopus, doi:10.1016/j.ijheatmasstransfer.2019.01.134.
Nejad AH, Ekici K, Sabau AS, Bejan A, Arimilli RV. Counter cross-flow evaporator geometries for supercritical organic Rankine cycles. International Journal of Heat and Mass Transfer. 2019 Jun 1;135:425–435.
Journal cover image

Published In

International Journal of Heat and Mass Transfer

DOI

ISSN

0017-9310

Publication Date

June 1, 2019

Volume

135

Start / End Page

425 / 435

Related Subject Headings

  • Mechanical Engineering & Transports
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 02 Physical Sciences
  • 01 Mathematical Sciences