Skip to main content
Journal cover image

Pitch control and speed limitation during overground deceleration in lemurid primates.

Publication ,  Journal Article
Miller, CE; Pinkard, H; Johnson, LE; Schmitt, D
Published in: Journal of morphology
February 2019

An animal's fitness is influenced by the ability to move safely through its environment. Recent models have shown that aspects of body geometry, for example, limb length and center of mass (COM) position, appear to set limits for pitch control in cursorial quadrupeds. Models of pitch control predict that the body shape of these and certain other primates, with short forelimbs and posteriorly positioned COM, should allow them to decelerate rapidly while minimizing the risk of pitching forward. We chose to test these models in two non-cursorial lemurs: Lemur catta, the highly terrestrial ring-tailed lemur, and Eulemur fulvus, the highly arboreal brown lemur. We modeled the effects of changes in limb length and COM position on maximum decelerative potential for both species, as well as collecting data on maximal decelerations across whole strides. In both species, maximum measured decelerations fell below the range of pitch-limited deceleration values predicted by the geometric model, with the ring-tailed lemur approaching its pitch limit more closely. Both lemurs showed decelerative potential equivalent to or higher than horses, the only comparative model currently available. These data reinforce the hypothesis that a relatively simple model of body geometry can predict aspects of maximum performance in animals. In this case, it appears that the body geometry of primates is skewed toward avoiding forward pitch in maximal decelerations.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Journal of morphology

DOI

EISSN

1097-4687

ISSN

0362-2525

Publication Date

February 2019

Volume

280

Issue

2

Start / End Page

300 / 306

Related Subject Headings

  • Male
  • Linear Models
  • Lemuridae
  • Horses
  • Female
  • Deceleration
  • Biomechanical Phenomena
  • Animals
  • Anatomy & Morphology
  • 3109 Zoology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Miller, C. E., Pinkard, H., Johnson, L. E., & Schmitt, D. (2019). Pitch control and speed limitation during overground deceleration in lemurid primates. Journal of Morphology, 280(2), 300–306. https://doi.org/10.1002/jmor.20944
Miller, Charlotte E., Henry Pinkard, Laura E. Johnson, and Daniel Schmitt. “Pitch control and speed limitation during overground deceleration in lemurid primates.Journal of Morphology 280, no. 2 (February 2019): 300–306. https://doi.org/10.1002/jmor.20944.
Miller CE, Pinkard H, Johnson LE, Schmitt D. Pitch control and speed limitation during overground deceleration in lemurid primates. Journal of morphology. 2019 Feb;280(2):300–6.
Miller, Charlotte E., et al. “Pitch control and speed limitation during overground deceleration in lemurid primates.Journal of Morphology, vol. 280, no. 2, Feb. 2019, pp. 300–06. Epmc, doi:10.1002/jmor.20944.
Miller CE, Pinkard H, Johnson LE, Schmitt D. Pitch control and speed limitation during overground deceleration in lemurid primates. Journal of morphology. 2019 Feb;280(2):300–306.
Journal cover image

Published In

Journal of morphology

DOI

EISSN

1097-4687

ISSN

0362-2525

Publication Date

February 2019

Volume

280

Issue

2

Start / End Page

300 / 306

Related Subject Headings

  • Male
  • Linear Models
  • Lemuridae
  • Horses
  • Female
  • Deceleration
  • Biomechanical Phenomena
  • Animals
  • Anatomy & Morphology
  • 3109 Zoology