A controlled red phosphorus@Ni-P core@shell nanostructure as an ultralong cycle-life and superior high-rate anode for sodium-ion batteries
Sodium-ion batteries (SIBs), a potential alternative to lithium ion batteries (LIBs), have attracted remarkable attention recently due to the natural abundance and low-cost of sodium. Here, we have presented a comprehensive study on combining electroless deposition with chemical dealloying to control the shell thickness and composition of a red phosphorus (RP)@Ni-P core@shell nanostructure as a high performance anode for SIBs. For the first time depending on regulating the dealloying time (1 h, 4 h, 8 h, 10 h and 20 h) of RP@Ni-P synthesized by electroless deposition of Ni on RP, 1 h RP@Ni-P, 4 h RP@Ni-P, 8 h RP@Ni-P, 10 h RP@Ni-P and 20 h RP@Ni-P with different shell thicknesses and compositions were prepared. The in situ generated Ni
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Energy
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Energy