Skip to main content

Validation of algorithmic CT image quality metrics with preferences of radiologists.

Publication ,  Journal Article
Cheng, Y; Abadi, E; Smith, TB; Ria, F; Meyer, M; Marin, D; Samei, E
Published in: Med Phys
November 2019

PURPOSE: Automated assessment of perceptual image quality on clinical Computed Tomography (CT) data by computer algorithms has the potential to greatly facilitate data-driven monitoring and optimization of CT image acquisition protocols. The application of these techniques in clinical operation requires the knowledge of how the output of the computer algorithms corresponds to clinical expectations. This study addressed the need to validate algorithmic image quality measurements on clinical CT images with preferences of radiologists and determine the clinically acceptable range of algorithmic measurements for abdominal CT examinations. MATERIALS AND METHODS: Algorithmic measurements of image quality metrics (organ HU, noise magnitude, and clarity) were performed on a clinical CT image dataset with supplemental measures of noise power spectrum from phantom images using techniques developed previously. The algorithmic measurements were compared to clinical expectations of image quality in an observer study with seven radiologists. Sets of CT liver images were selected from the dataset where images in the same set varied in terms of one metric at a time. These sets of images were shown via a web interface to one observer at a time. First, the observer rank ordered the CT images in a set according to his/her preference for the varying metric. The observer then selected his/her preferred acceptable range of the metric within the ranked images. The agreement between algorithmic and observer rankings of image quality were investigated and the clinically acceptable image quality in terms of algorithmic measurements were determined. RESULTS: The overall rank-order agreements between algorithmic and observer assessments were 0.90, 0.98, and 1.00 for noise magnitude, liver parenchyma HU, and clarity, respectively. The results indicate a strong agreement between the algorithmic and observer assessments of image quality. Clinically acceptable thresholds (median) of algorithmic metric values were (17.8, 32.6) HU for noise magnitude, (92.1, 131.9) for liver parenchyma HU, and (0.47, 0.52) for clarity. CONCLUSIONS: The observer study results indicated that these algorithms can robustly assess the perceptual quality of clinical CT images in an automated fashion. Clinically acceptable ranges of algorithmic measurements were determined. The correspondence of these image quality assessment algorithms to clinical expectations paves the way toward establishing diagnostic reference levels in terms of clinically acceptable perceptual image quality and data-driven optimization of CT image acquisition protocols.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Med Phys

DOI

EISSN

2473-4209

Publication Date

November 2019

Volume

46

Issue

11

Start / End Page

4837 / 4846

Location

United States

Related Subject Headings

  • Tomography, X-Ray Computed
  • Radiologists
  • Quality Control
  • Nuclear Medicine & Medical Imaging
  • Image Processing, Computer-Assisted
  • Humans
  • Algorithms
  • 5105 Medical and biological physics
  • 4003 Biomedical engineering
  • 1112 Oncology and Carcinogenesis
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Cheng, Y., Abadi, E., Smith, T. B., Ria, F., Meyer, M., Marin, D., & Samei, E. (2019). Validation of algorithmic CT image quality metrics with preferences of radiologists. Med Phys, 46(11), 4837–4846. https://doi.org/10.1002/mp.13795
Cheng, Yuan, Ehsan Abadi, Taylor Brunton Smith, Francesco Ria, Mathias Meyer, Daniele Marin, and Ehsan Samei. “Validation of algorithmic CT image quality metrics with preferences of radiologists.Med Phys 46, no. 11 (November 2019): 4837–46. https://doi.org/10.1002/mp.13795.
Cheng Y, Abadi E, Smith TB, Ria F, Meyer M, Marin D, et al. Validation of algorithmic CT image quality metrics with preferences of radiologists. Med Phys. 2019 Nov;46(11):4837–46.
Cheng, Yuan, et al. “Validation of algorithmic CT image quality metrics with preferences of radiologists.Med Phys, vol. 46, no. 11, Nov. 2019, pp. 4837–46. Pubmed, doi:10.1002/mp.13795.
Cheng Y, Abadi E, Smith TB, Ria F, Meyer M, Marin D, Samei E. Validation of algorithmic CT image quality metrics with preferences of radiologists. Med Phys. 2019 Nov;46(11):4837–4846.

Published In

Med Phys

DOI

EISSN

2473-4209

Publication Date

November 2019

Volume

46

Issue

11

Start / End Page

4837 / 4846

Location

United States

Related Subject Headings

  • Tomography, X-Ray Computed
  • Radiologists
  • Quality Control
  • Nuclear Medicine & Medical Imaging
  • Image Processing, Computer-Assisted
  • Humans
  • Algorithms
  • 5105 Medical and biological physics
  • 4003 Biomedical engineering
  • 1112 Oncology and Carcinogenesis