Skip to main content

Increased training loads do not magnify cancellous bone gains with rodent jump resistance exercise.

Publication ,  Journal Article
Swift, JM; Gasier, HG; Swift, SN; Wiggs, MP; Hogan, HA; Fluckey, JD; Bloomfield, SA
Published in: J Appl Physiol (1985)
December 2010

This study sought to elucidate the effects of a low- and high-load jump resistance exercise (RE) training protocol on cancellous bone of the proximal tibia metaphysis (PTM) and femoral neck (FN). Sprague-Dawley rats (male, 6 mo old) were randomly assigned to high-load RE (HRE; n = 16), low-load RE (LRE; n = 15), or sedentary cage control (CC; n = 11) groups. Animals in the HRE and LRE groups performed 15 sessions of jump RE during 5 wk of training. PTM cancellous volumetric bone mineral density (vBMD), assessed by in vivo peripheral quantitative computed tomography scans, significantly increased in both exercise groups (+9%; P < 0.001), resulting in part from 130% (HRE; P = 0.003) and 213% (LRE; P < 0.0001) greater bone formation (measured by standard histomorphometry) vs. CC. Additionally, mineralizing surface (%MS/BS) and mineral apposition rate were higher (50-90%) in HRE and LRE animals compared with controls. PTM bone microarchitecture was enhanced with LRE, resulting in greater trabecular thickness (P = 0.03) and bone volume fraction (BV/TV; P = 0.04) vs. CC. Resorption surface was reduced by nearly 50% in both exercise paradigms. Increased PTM bone mass in the LRE group translated into a 161% greater elastic modulus (P = 0.04) vs. CC. LRE and HRE increased FN vBMD (10%; P < 0.0001) and bone mineral content (∼ 20%; P < 0.0001) and resulted in significantly greater FN strength vs. CC. For the vast majority of variables, there was no difference in the cancellous bone response between the two exercise groups, although LRE resulted in significantly greater body mass accrual and bone formation response. These results suggest that jumping at minimal resistance provides a similar anabolic stimulus to cancellous bone as jumping at loads exceeding body mass.

Duke Scholars

Published In

J Appl Physiol (1985)

DOI

EISSN

1522-1601

Publication Date

December 2010

Volume

109

Issue

6

Start / End Page

1600 / 1607

Location

United States

Related Subject Headings

  • Weight-Bearing
  • Weight Gain
  • Tomography, X-Ray Computed
  • Time Factors
  • Tibia
  • Resistance Training
  • Rats, Sprague-Dawley
  • Rats
  • Physiology
  • Osteogenesis
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Swift, J. M., Gasier, H. G., Swift, S. N., Wiggs, M. P., Hogan, H. A., Fluckey, J. D., & Bloomfield, S. A. (2010). Increased training loads do not magnify cancellous bone gains with rodent jump resistance exercise. J Appl Physiol (1985), 109(6), 1600–1607. https://doi.org/10.1152/japplphysiol.00596.2010
Swift, J. M., H. G. Gasier, S. N. Swift, M. P. Wiggs, H. A. Hogan, J. D. Fluckey, and S. A. Bloomfield. “Increased training loads do not magnify cancellous bone gains with rodent jump resistance exercise.J Appl Physiol (1985) 109, no. 6 (December 2010): 1600–1607. https://doi.org/10.1152/japplphysiol.00596.2010.
Swift JM, Gasier HG, Swift SN, Wiggs MP, Hogan HA, Fluckey JD, et al. Increased training loads do not magnify cancellous bone gains with rodent jump resistance exercise. J Appl Physiol (1985). 2010 Dec;109(6):1600–7.
Swift, J. M., et al. “Increased training loads do not magnify cancellous bone gains with rodent jump resistance exercise.J Appl Physiol (1985), vol. 109, no. 6, Dec. 2010, pp. 1600–07. Pubmed, doi:10.1152/japplphysiol.00596.2010.
Swift JM, Gasier HG, Swift SN, Wiggs MP, Hogan HA, Fluckey JD, Bloomfield SA. Increased training loads do not magnify cancellous bone gains with rodent jump resistance exercise. J Appl Physiol (1985). 2010 Dec;109(6):1600–1607.

Published In

J Appl Physiol (1985)

DOI

EISSN

1522-1601

Publication Date

December 2010

Volume

109

Issue

6

Start / End Page

1600 / 1607

Location

United States

Related Subject Headings

  • Weight-Bearing
  • Weight Gain
  • Tomography, X-Ray Computed
  • Time Factors
  • Tibia
  • Resistance Training
  • Rats, Sprague-Dawley
  • Rats
  • Physiology
  • Osteogenesis