Ultrathin, High Capacitance Capping Layers for Silicon Electronics with Conductive Interconnects in Flexible, Long-Lived Bioimplants
Bioimplants that incorporate active electronic components at the tissue interface rely critically on materials that are biocompatible, impermeable to biofluids, and capable of intimate electrical coupling for high-quality, chronically stable operation in vivo. This study reports a materials strategy that combines silicon nanomembranes, thermally grown layers of SiO
Duke Scholars
Published In
DOI
EISSN
Publication Date
Volume
Issue
Related Subject Headings
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Related Subject Headings
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences