Fluorescence spectroscopy for diagnosis of esophageal cancer
Laser-induced fluorescence spectroscopy was employed to measure fluorescence emission of normal and malignant tissue during endoscopy in patients with esophageal adenocarcinoma. A nitrogen/dye laser tuned at 410 nm was used for excitation source. The fluorescence lineshape of each spectrum was determined and sampled at 15 nm intervals from 430 nm to 716 nm. A calibration set from normal and malignant spectra were selected. Using stepwise discriminate analysis, significant wavelengths that separated normal and malignant spectra were selected. The intensities at these wavelengths were used to formulate a classification model using linear discriminate analysis. The model was used to classify additional tissue spectra from 26 malignant and 108 normal sites into either normal or malignant spectra with a sensitivity of 100 percent and specificity of 98 percent.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering