Skip to main content
Journal cover image

Daily edge deformation prediction using an unsupervised convolutional neural network model for low dose prior contour based total variation CBCT reconstruction (PCTV-CNN).

Publication ,  Journal Article
Chen, Y; Yin, F-F; Jiang, Z; Ren, L
Published in: Biomed Phys Eng Express
October 2019

PURPOSE: Previously we developed a PCTV method to enhance the edge sharpness for low-dose CBCT reconstruction. However, the iterative deformable registration method used for deforming edges from planning-CT to on-board CBCT is time-consuming and user-dependent. This study aims to automate and accelerate PCTV reconstruction by developing an unsupervised CNN model to bypass the conventional deformable registration. METHODS: The new method uses unsupervised CNN model for deformation prediction and PCTV reconstruction. An unsupervised CNN model with a u-net structure was used to predict deformation vector fields (DVF) to generate on-board contours for PCTV reconstruction. Paired 3D image volumes of prior CT and on-board CBCT are inputs and DVF are predicted without the need of ground truths. The model was initially trained on brain MRI images, and then fine-tuned using our lung SBRT data. This method was evaluated using lung SBRT patient data. In the intra-patient study, the first n-1 day's CBCTs are used for CNN training to predict nth day edge information (n = 2, 3, 4, 5). 45 half-fan projections covering 360˚ from nth day CBCT is used for reconstruction. In the inter-patient study, the 10 patient images including CT and first day's CBCT are used for training. Results from Edge-preserving (EPTV), PCTV and PCTV-CNN are compared. RESULTS: The cross-correlations of the predicted edge map and the ground truth were on average 0.88 for both intra-patient and inter-patient studies. PCTV-CNN achieved comparable image quality as PCTV while automating the registration process and reducing the registration time from 1-2 min to 1.4 s. CONCLUSION: It is feasible to use an unsupervised CNN to predict daily deformation of on-board edge information for PCTV based low-dose CBCT reconstruction. PCTV-CNN has a great potential for enhancing the edge sharpness with high efficiency for low-dose CBCT to improve the precision of on-board target localization and adaptive radiotherapy.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Biomed Phys Eng Express

DOI

ISSN

2057-1976

Publication Date

October 2019

Volume

5

Issue

6

Location

England

Related Subject Headings

  • 4003 Biomedical engineering
  • 3206 Medical biotechnology
  • 1004 Medical Biotechnology
  • 0903 Biomedical Engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Journal cover image

Published In

Biomed Phys Eng Express

DOI

ISSN

2057-1976

Publication Date

October 2019

Volume

5

Issue

6

Location

England

Related Subject Headings

  • 4003 Biomedical engineering
  • 3206 Medical biotechnology
  • 1004 Medical Biotechnology
  • 0903 Biomedical Engineering