Is vortex stretching the main cause of the turbulent energy cascade?
In three-dimensional turbulence there is on average a cascade of kinetic energy from the largest to the smallest scales of the flow. While the dominant idea is that the cascade occurs through the process of vortex stretching, evidence for this is debated. Here we show theoretically and numerically that vortex stretching is in fact not the main contributor to the average cascade. The main contributor is the self-amplification of the strain-rate field, and we provide several arguments for why its role must not be conflated with that of vortex stretching. Numerical results, however, indicate that vortex stretching plays a more important role during fluctuations of the cascade about its average behaviour. We also resolve a paradox regarding the differing role of vortex stretching on the energy cascade and energy dissipation rate dynamics.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Related Subject Headings
- Fluids & Plasmas
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 01 Mathematical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Related Subject Headings
- Fluids & Plasmas
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 01 Mathematical Sciences