Skip to main content
Journal cover image

Asynchronous carbon sink saturation in African and Amazonian tropical forests.

Publication ,  Journal Article
Hubau, W; Lewis, SL; Phillips, OL; Affum-Baffoe, K; Beeckman, H; Cuní-Sanchez, A; Daniels, AK; Ewango, CEN; Fauset, S; Mukinzi, JM; Sheil, D ...
Published in: Nature
March 2020

Structurally intact tropical forests sequestered about half of the global terrestrial carbon uptake over the 1990s and early 2000s, removing about 15 per cent of anthropogenic carbon dioxide emissions1-3. Climate-driven vegetation models typically predict that this tropical forest 'carbon sink' will continue for decades4,5. Here we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass in intact African tropical forests has been stable for the three decades to 2015, at 0.66 tonnes of carbon per hectare per year (95 per cent confidence interval 0.53-0.79), in contrast to the long-term decline in Amazonian forests6. Therefore the carbon sink responses of Earth's two largest expanses of tropical forest have diverged. The difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree growth, consistent with the expected net effect of rising atmospheric carbon dioxide and air temperature7-9. Despite the past stability of the African carbon sink, our most intensively monitored plots suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical model including carbon dioxide, temperature, drought and forest dynamics accounts for the observed trends and indicates a long-term future decline in the African sink, whereas the Amazonian sink continues to weaken rapidly. Overall, the uptake of carbon into Earth's intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, independent observations indicating greater recent carbon uptake into the Northern Hemisphere landmass10 reinforce our conclusion that the intact tropical forest carbon sink has already peaked. This saturation and ongoing decline of the tropical forest carbon sink has consequences for policies intended to stabilize Earth's climate.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Nature

DOI

EISSN

1476-4687

ISSN

0028-0836

Publication Date

March 2020

Volume

579

Issue

7797

Start / End Page

80 / 87

Related Subject Headings

  • Tropical Climate
  • Trees
  • Temperature
  • Models, Theoretical
  • History, 21st Century
  • History, 20th Century
  • General Science & Technology
  • Forests
  • Droughts
  • Carbon Sequestration
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Hubau, W., Lewis, S. L., Phillips, O. L., Affum-Baffoe, K., Beeckman, H., Cuní-Sanchez, A., … Zemagho, L. (2020). Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature, 579(7797), 80–87. https://doi.org/10.1038/s41586-020-2035-0
Hubau, Wannes, Simon L. Lewis, Oliver L. Phillips, Kofi Affum-Baffoe, Hans Beeckman, Aida Cuní-Sanchez, Armandu K. Daniels, et al. “Asynchronous carbon sink saturation in African and Amazonian tropical forests.Nature 579, no. 7797 (March 2020): 80–87. https://doi.org/10.1038/s41586-020-2035-0.
Hubau W, Lewis SL, Phillips OL, Affum-Baffoe K, Beeckman H, Cuní-Sanchez A, et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature. 2020 Mar;579(7797):80–7.
Hubau, Wannes, et al. “Asynchronous carbon sink saturation in African and Amazonian tropical forests.Nature, vol. 579, no. 7797, Mar. 2020, pp. 80–87. Epmc, doi:10.1038/s41586-020-2035-0.
Hubau W, Lewis SL, Phillips OL, Affum-Baffoe K, Beeckman H, Cuní-Sanchez A, Daniels AK, Ewango CEN, Fauset S, Mukinzi JM, Sheil D, Sonké B, Sullivan MJP, Sunderland TCH, Taedoumg H, Thomas SC, White LJT, Abernethy KA, Adu-Bredu S, Amani CA, Baker TR, Banin LF, Baya F, Begne SK, Bennett AC, Benedet F, Bitariho R, Bocko YE, Boeckx P, Boundja P, Brienen RJW, Brncic T, Chezeaux E, Chuyong GB, Clark CJ, Collins M, Comiskey JA, Coomes DA, Dargie GC, de Haulleville T, Kamdem MND, Doucet J-L, Esquivel-Muelbert A, Feldpausch TR, Fofanah A, Foli EG, Gilpin M, Gloor E, Gonmadje C, Gourlet-Fleury S, Hall JS, Hamilton AC, Harris DJ, Hart TB, Hockemba MBN, Hladik A, Ifo SA, Jeffery KJ, Jucker T, Yakusu EK, Kearsley E, Kenfack D, Koch A, Leal ME, Levesley A, Lindsell JA, Lisingo J, Lopez-Gonzalez G, Lovett JC, Makana J-R, Malhi Y, Marshall AR, Martin J, Martin EH, Mbayu FM, Medjibe VP, Mihindou V, Mitchard ETA, Moore S, Munishi PKT, Bengone NN, Ojo L, Ondo FE, Peh KS-H, Pickavance GC, Poulsen AD, Poulsen JR, Qie L, Reitsma J, Rovero F, Swaine MD, Talbot J, Taplin J, Taylor DM, Thomas DW, Toirambe B, Mukendi JT, Tuagben D, Umunay PM, van der Heijden GMF, Verbeeck H, Vleminckx J, Willcock S, Wöll H, Woods JT, Zemagho L. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature. 2020 Mar;579(7797):80–87.
Journal cover image

Published In

Nature

DOI

EISSN

1476-4687

ISSN

0028-0836

Publication Date

March 2020

Volume

579

Issue

7797

Start / End Page

80 / 87

Related Subject Headings

  • Tropical Climate
  • Trees
  • Temperature
  • Models, Theoretical
  • History, 21st Century
  • History, 20th Century
  • General Science & Technology
  • Forests
  • Droughts
  • Carbon Sequestration