Three-Dimensional Planetary Boundary Layer Parameterization for High-Resolution Mesoscale Simulations
Wind energy applications including wind resource assessment, wind power forecasting, and wind plant optimization require high-resolution mesoscale simulations. High resolution mesoscale simulations are essential for accurate characterization of atmospheric flows over heterogeneous land use and complex terrain. Under such conditions, the assumption of grid-cell homogeneity, used in one-dimensional planetary boundary layer (1D PBL) parameterizations, breaks down. However, in most numerical weather prediction (NWP) models, boundary layer turbulence is parameterized using 1D PBL parameterizations. We have therefore developed a three-dimensional (3D) PBL parameterization to better account for horizontal flow heterogeneities. We have implemented and tested the 3D PBL parameterization in the Weather Research and Forecasting (WRF) numerical weather prediction model. The new parameterization is validated using observations from the Wind Forecast Improvement 2 (WFIP 2) project and compared to 1D PBL results.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- 51 Physical sciences
- 0299 Other Physical Sciences
- 0204 Condensed Matter Physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- 51 Physical sciences
- 0299 Other Physical Sciences
- 0204 Condensed Matter Physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics