Skip to main content
Journal cover image

Flash ablation metallization of conductive thermoplastics

Publication ,  Journal Article
Cardenas, JA; Tsang, H; Tong, H; Abuzaid, H; Price, K; Cruz, MA; Wiley, BJ; Franklin, AD; Lazarus, N
Published in: Additive Manufacturing
December 1, 2020

Fused filament fabrication (FFF) is the most widely available 3D printing technology. Recently, a variety of conductive thermoplastic filaments have become commercially available, allowing printing of electronic structures using the technology. However, the contact interface and conductivity of these filaments after printing remains relatively poor, the latter of which is typically at least four orders of magnitude lower than bulk metal conductors. While several post-processing approaches exist to enhance conductivity, they are either user-intensive, time consuming, or cannot easily be integrated in-line with the rest of the printing process. In this work, we demonstrate that exposing conductive composite thermoplastic films (3D printed or solution-cast) to high-intensity pulsed light increases their conductance by up to two orders of magnitude in a manner that is fast, non-contact, and potentially in-line. This process, referred to as flash ablation metallization (FAM), is found to vaporize the thermoplastic matrix on the top surface of a composite film, leaving behind a metal-dense surface layer. The technique was found to be effective for a variety of commercial and custom-made conductive thermoplastic composites, with the largest response found in Electrifi, a commercial filament consisting of copper particle loading in a biodegradable polyester. 3D-printed circuit boards were constructed with and without FAM exposure, with exposed circuits exhibiting reduced operating voltages as well as improvements in reliability.

Duke Scholars

Published In

Additive Manufacturing

DOI

EISSN

2214-8604

Publication Date

December 1, 2020

Volume

36

Related Subject Headings

  • 4016 Materials engineering
  • 4014 Manufacturing engineering
  • 0910 Manufacturing Engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Cardenas, J. A., Tsang, H., Tong, H., Abuzaid, H., Price, K., Cruz, M. A., … Lazarus, N. (2020). Flash ablation metallization of conductive thermoplastics. Additive Manufacturing, 36. https://doi.org/10.1016/j.addma.2020.101409
Cardenas, J. A., H. Tsang, H. Tong, H. Abuzaid, K. Price, M. A. Cruz, B. J. Wiley, A. D. Franklin, and N. Lazarus. “Flash ablation metallization of conductive thermoplastics.” Additive Manufacturing 36 (December 1, 2020). https://doi.org/10.1016/j.addma.2020.101409.
Cardenas JA, Tsang H, Tong H, Abuzaid H, Price K, Cruz MA, et al. Flash ablation metallization of conductive thermoplastics. Additive Manufacturing. 2020 Dec 1;36.
Cardenas, J. A., et al. “Flash ablation metallization of conductive thermoplastics.” Additive Manufacturing, vol. 36, Dec. 2020. Scopus, doi:10.1016/j.addma.2020.101409.
Cardenas JA, Tsang H, Tong H, Abuzaid H, Price K, Cruz MA, Wiley BJ, Franklin AD, Lazarus N. Flash ablation metallization of conductive thermoplastics. Additive Manufacturing. 2020 Dec 1;36.
Journal cover image

Published In

Additive Manufacturing

DOI

EISSN

2214-8604

Publication Date

December 1, 2020

Volume

36

Related Subject Headings

  • 4016 Materials engineering
  • 4014 Manufacturing engineering
  • 0910 Manufacturing Engineering