Skip to main content
Journal cover image

Modal analysis of the box assembly with removable component in two configurations

Publication ,  Conference
Manring, LH; Mann, BP; Schultze, JF
Published in: Conference Proceedings of the Society for Experimental Mechanics Series
January 1, 2021

To ensure accurate predictions of behavior and life-cycle of components in their real-use environment, it is essential to develop accurate simulation and testing procedures that reflect such an environment. For components on machines that experience a significant dynamic environment (such as airplanes, missiles, and automobiles), creating testing procedures that accurately mimic such a complex and harsh environment is a significant challenge. Often, testing a system by subjecting it to its operating environment is prohibitive due to cost and testing limitations. Thus, the usefulness of bench testing components through a testing procedure that mimics an operating environment is clear. Structural environmental testing is typically performed using a shaker to apply an environment to a component. However, shaker testing is currently limited in its ability to recreate environments because it often involves excitation in only one axis, when the system experiences a six degree of freedom excitation in practice. Additionally, there are many issues in matching boundary conditions in environmental testing. This paper seeks to explore environmental testing on a simple structure called the “Box Assembly with Removable Component” (BARC). Results from modal testing of the structure will investigate the structures mode shapes, damping, and natural frequencies in a free-free configuration and a fixed-base configuration (mounted to a shaker table). This paper will present a comparison of the mode shapes in these two configurations as well as reciprocities from the modal testing to give further insight into the impedance mismatch between these configurations. Additionally, results from uniaxial shaker excitation of the BARC structure in three axes will be presented. Understanding the differences in dynamics between the two configurations gives insight into how the BARC shaker testing can be understood to more accurately reflect an operational environment.

Duke Scholars

Published In

Conference Proceedings of the Society for Experimental Mechanics Series

DOI

EISSN

2191-5652

ISSN

2191-5644

ISBN

9783030477080

Publication Date

January 1, 2021

Start / End Page

271 / 281
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Manring, L. H., Mann, B. P., & Schultze, J. F. (2021). Modal analysis of the box assembly with removable component in two configurations. In Conference Proceedings of the Society for Experimental Mechanics Series (pp. 271–281). https://doi.org/10.1007/978-3-030-47709-7_25
Manring, L. H., B. P. Mann, and J. F. Schultze. “Modal analysis of the box assembly with removable component in two configurations.” In Conference Proceedings of the Society for Experimental Mechanics Series, 271–81, 2021. https://doi.org/10.1007/978-3-030-47709-7_25.
Manring LH, Mann BP, Schultze JF. Modal analysis of the box assembly with removable component in two configurations. In: Conference Proceedings of the Society for Experimental Mechanics Series. 2021. p. 271–81.
Manring, L. H., et al. “Modal analysis of the box assembly with removable component in two configurations.” Conference Proceedings of the Society for Experimental Mechanics Series, 2021, pp. 271–81. Scopus, doi:10.1007/978-3-030-47709-7_25.
Manring LH, Mann BP, Schultze JF. Modal analysis of the box assembly with removable component in two configurations. Conference Proceedings of the Society for Experimental Mechanics Series. 2021. p. 271–281.
Journal cover image

Published In

Conference Proceedings of the Society for Experimental Mechanics Series

DOI

EISSN

2191-5652

ISSN

2191-5644

ISBN

9783030477080

Publication Date

January 1, 2021

Start / End Page

271 / 281