Analytical Force and Flux for a 1-D Electromagnetic Vibration Energy Harvester
A vibration energy harvester (VEH) converts the kinetic energy of a moving source into electrical energy. In this article, we consider a 1-D electromagnetic vibration energy harvester (1-D EMVEH) that consists of three coaxial cylindrical permanent magnets enclosed in a tube such that the middle magnet is levitating. The resulting movement of the middle magnet can then induce an electromotive force (EMF) in one or more surrounding coils. Using an analytical model, we derive expressions for the 1-D-EMVEHs characteristic frequency and output power by using the Fourier space approach. First, the magnetostatic energy of the system as a function of the position of the levitating magnet is calculated. Its spatial gradient gives the force acting on a magnet, which drives its dynamics. Next, more accurate magnetic flux and EMF expressions are obtained. The results are compared with experimental measurements, revealing an excellent agreement.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Applied Physics
- 51 Physical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Applied Physics
- 51 Physical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences