Snapshot Compressive Imaging: Theory, Algorithms, and Applications
Capturing high-dimensional (HD) data is a long-term challenge in signal processing and related fields. Snapshot compressive imaging (SCI) uses a 2D detector to capture HD (≥3D) data in a snapshot measurement. Via novel optical designs, the 2D detector samples the HD data in a compressive manner; following this, algorithms are employed to reconstruct the desired HD data cube. SCI has been used in hyperspectral imaging, video, holography, tomography, focal depth imaging, polarization imaging, microscopy, and so on. Although the hardware has been investigated for more than a decade, the theoretical guarantees have only recently been derived. Inspired by deep learning, various deep neural networks have also been developed to reconstruct the HD data cube in spectral SCI and video SCI. This article reviews recent advances in SCI hardware, theory, and algorithms, including both optimizationbased and deep learning-based algorithms. Diverse applications and the outlook for SCI are also discussed.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Networking & Telecommunications
- 4603 Computer vision and multimedia computation
- 4006 Communications engineering
- 0913 Mechanical Engineering
- 0906 Electrical and Electronic Engineering
- 0801 Artificial Intelligence and Image Processing
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Networking & Telecommunications
- 4603 Computer vision and multimedia computation
- 4006 Communications engineering
- 0913 Mechanical Engineering
- 0906 Electrical and Electronic Engineering
- 0801 Artificial Intelligence and Image Processing