Skip to main content

Acoustoelectronic nanotweezers enable dynamic and large-scale control of nanomaterials.

Publication ,  Journal Article
Zhang, P; Rufo, J; Chen, C; Xia, J; Tian, Z; Zhang, L; Hao, N; Zhong, Z; Gu, Y; Chakrabarty, K; Huang, TJ
Published in: Nature communications
June 2021

The ability to precisely manipulate nano-objects on a large scale can enable the fabrication of materials and devices with tunable optical, electromagnetic, and mechanical properties. However, the dynamic, parallel manipulation of nanoscale colloids and materials remains a significant challenge. Here, we demonstrate acoustoelectronic nanotweezers, which combine the precision and robustness afforded by electronic tweezers with versatility and large-field dynamic control granted by acoustic tweezing techniques, to enable the massively parallel manipulation of sub-100 nm objects with excellent versatility and controllability. Using this approach, we demonstrated the complex patterning of various nanoparticles (e.g., DNAs, exosomes, ~3 nm graphene flakes, ~6 nm quantum dots, ~3.5 nm proteins, and ~1.4 nm dextran), fabricated macroscopic materials with nano-textures, and performed high-resolution, single nanoparticle manipulation. Various nanomanipulation functions, including transportation, concentration, orientation, pattern-overlaying, and sorting, have also been achieved using a simple device configuration. Altogether, acoustoelectronic nanotweezers overcome existing limitations in nano-manipulation and hold great potential for a variety of applications in the fields of electronics, optics, condensed matter physics, metamaterials, and biomedicine.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Nature communications

DOI

EISSN

2041-1723

ISSN

2041-1723

Publication Date

June 2021

Volume

12

Issue

1

Start / End Page

3844

Related Subject Headings

  • Reproducibility of Results
  • Particle Size
  • Optical Tweezers
  • Nanotubes, Carbon
  • Nanotechnology
  • Nanostructures
  • Metal Nanoparticles
  • Exosomes
  • Electronics
  • DNA
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Zhang, P., Rufo, J., Chen, C., Xia, J., Tian, Z., Zhang, L., … Huang, T. J. (2021). Acoustoelectronic nanotweezers enable dynamic and large-scale control of nanomaterials. Nature Communications, 12(1), 3844. https://doi.org/10.1038/s41467-021-24101-z
Zhang, Peiran, Joseph Rufo, Chuyi Chen, Jianping Xia, Zhenhua Tian, Liying Zhang, Nanjing Hao, et al. “Acoustoelectronic nanotweezers enable dynamic and large-scale control of nanomaterials.Nature Communications 12, no. 1 (June 2021): 3844. https://doi.org/10.1038/s41467-021-24101-z.
Zhang P, Rufo J, Chen C, Xia J, Tian Z, Zhang L, et al. Acoustoelectronic nanotweezers enable dynamic and large-scale control of nanomaterials. Nature communications. 2021 Jun;12(1):3844.
Zhang, Peiran, et al. “Acoustoelectronic nanotweezers enable dynamic and large-scale control of nanomaterials.Nature Communications, vol. 12, no. 1, June 2021, p. 3844. Epmc, doi:10.1038/s41467-021-24101-z.
Zhang P, Rufo J, Chen C, Xia J, Tian Z, Zhang L, Hao N, Zhong Z, Gu Y, Chakrabarty K, Huang TJ. Acoustoelectronic nanotweezers enable dynamic and large-scale control of nanomaterials. Nature communications. 2021 Jun;12(1):3844.

Published In

Nature communications

DOI

EISSN

2041-1723

ISSN

2041-1723

Publication Date

June 2021

Volume

12

Issue

1

Start / End Page

3844

Related Subject Headings

  • Reproducibility of Results
  • Particle Size
  • Optical Tweezers
  • Nanotubes, Carbon
  • Nanotechnology
  • Nanostructures
  • Metal Nanoparticles
  • Exosomes
  • Electronics
  • DNA