Skip to main content
Journal cover image

Life-cycle energy impacts for adapting an urban water supply system to droughts.

Publication ,  Journal Article
Lam, KL; Stokes-Draut, JR; Horvath, A; Lane, JL; Kenway, SJ; Lant, PA
Published in: Water research
December 2017

In recent years, cities in some water stressed regions have explored alternative water sources such as seawater desalination and potable water recycling in spite of concerns over increasing energy consumption. In this study, we evaluate the current and future life-cycle energy impacts of four alternative water supply strategies introduced during a decade-long drought in South East Queensland (SEQ), Australia. These strategies were: seawater desalination, indirect potable water recycling, network integration, and rainwater tanks. Our work highlights the energy burden of alternative water supply strategies which added approximately 24% life-cycle energy use to the existing supply system (with surface water sources) in SEQ even for a current post-drought low utilisation status. Over half of this additional life-cycle energy use was from the centralised alternative supply strategies. Rainwater tanks contributed an estimated 3% to regional water supply, but added over 10% life-cycle energy use to the existing system. In the future scenario analysis, we compare the life-cycle energy use between "Normal", "Dry", "High water demand" and "Design capacity" scenarios. In the "Normal" scenario, a long-term low utilisation of the desalination system and the water recycling system has greatly reduced the energy burden of these centralised strategies to only 13%. In contrast, higher utilisation in the unlikely "Dry" and "Design capacity" scenarios add 86% and 140% to life-cycle energy use of the existing system respectively. In the "High water demand" scenario, a 20% increase in per capita water use over 20 years "consumes" more energy than is used by the four alternative strategies in the "Normal" scenario. This research provides insight for developing more realistic long-term scenarios to evaluate and compare life-cycle energy impacts of drought-adaptation infrastructure and regional decentralised water sources. Scenario building for life-cycle assessments of water supply systems should consider i) climate variability and, therefore, infrastructure utilisation rate, ii) potential under-utilisation for both installed centralised and decentralised sources, and iii) the potential energy penalty for operating infrastructure well below its design capacity (e.g., the operational energy intensity of the desalination system is three times higher at low utilisation rates). This study illustrates that evaluating the life-cycle energy use and intensity of these type of supply sources without considering their realistic long-term operating scenario(s) can potentially distort and overemphasise their energy implications. To other water stressed regions, this work shows that managing long-term water demand is also important, in addition to acknowledging the energy-intensive nature of some alternative water sources.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Water research

DOI

EISSN

1879-2448

ISSN

0043-1354

Publication Date

December 2017

Volume

127

Start / End Page

139 / 149

Related Subject Headings

  • Water Supply
  • Water Purification
  • Seawater
  • Recycling
  • Queensland
  • Environmental Engineering
  • Droughts
  • Drinking Water
  • Conservation of Natural Resources
  • Conservation of Energy Resources
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Lam, K. L., Stokes-Draut, J. R., Horvath, A., Lane, J. L., Kenway, S. J., & Lant, P. A. (2017). Life-cycle energy impacts for adapting an urban water supply system to droughts. Water Research, 127, 139–149. https://doi.org/10.1016/j.watres.2017.10.016
Lam, Ka Leung, Jennifer R. Stokes-Draut, Arpad Horvath, Joe L. Lane, Steven J. Kenway, and Paul A. Lant. “Life-cycle energy impacts for adapting an urban water supply system to droughts.Water Research 127 (December 2017): 139–49. https://doi.org/10.1016/j.watres.2017.10.016.
Lam KL, Stokes-Draut JR, Horvath A, Lane JL, Kenway SJ, Lant PA. Life-cycle energy impacts for adapting an urban water supply system to droughts. Water research. 2017 Dec;127:139–49.
Lam, Ka Leung, et al. “Life-cycle energy impacts for adapting an urban water supply system to droughts.Water Research, vol. 127, Dec. 2017, pp. 139–49. Epmc, doi:10.1016/j.watres.2017.10.016.
Lam KL, Stokes-Draut JR, Horvath A, Lane JL, Kenway SJ, Lant PA. Life-cycle energy impacts for adapting an urban water supply system to droughts. Water research. 2017 Dec;127:139–149.
Journal cover image

Published In

Water research

DOI

EISSN

1879-2448

ISSN

0043-1354

Publication Date

December 2017

Volume

127

Start / End Page

139 / 149

Related Subject Headings

  • Water Supply
  • Water Purification
  • Seawater
  • Recycling
  • Queensland
  • Environmental Engineering
  • Droughts
  • Drinking Water
  • Conservation of Natural Resources
  • Conservation of Energy Resources