Skip to main content

Molecular Adaptation to Folivory and the Conservation Implications for Madagascar’s Lemurs

Publication ,  Journal Article
Guevara, EE; Greene, LK; Blanco, MB; Farmer, C; Ranaivonasy, J; Ratsirarson, J; Mahefarisoa, KL; Rajaonarivelo, T; Rakotondrainibe, HH ...
Published in: Frontiers in Ecology and Evolution
October 6, 2021

The lemurs of Madagascar include numerous species characterized by folivory across several families. Many extant lemuriform folivores exist in sympatry in Madagascar’s remaining forests. These species avoid feeding competition by adopting different dietary strategies within folivory, reflected in behavioral, morphological, and microbiota diversity across species. These conditions make lemurs an ideal study system for understanding adaptation to leaf-eating. Most folivorous lemurs are also highly endangered. The significance of folivory for conservation outlook is complex. Though generalist folivores may be relatively well equipped to survive habitat disturbance, specialist folivores occupying narrow dietary niches may be less resilient. Characterizing the genetic bases of adaptation to folivory across species and lineages can provide insights into their differential physiology and potential to resist habitat change. We recently reported accelerated genetic change in RNASE1, a gene encoding an enzyme (RNase 1) involved in molecular adaptation in mammalian folivores, including various monkeys and sifakas (genus Propithecus; family Indriidae). Here, we sought to assess whether other lemurs, including phylogenetically and ecologically diverse folivores, might show parallel adaptive change in RNASE1 that could underlie a capacity for efficient folivory. We characterized RNASE1 in 21 lemur species representing all five families and members of the three extant folivorous lineages: (1) bamboo lemurs (family Lemuridae), (2) sportive lemurs (family Lepilemuridae), and (3) indriids (family Indriidae). We found pervasive sequence change in RNASE1 across all indriids, a dN/dS value > 3 in this clade, and evidence for shared change in isoelectric point, indicating altered enzymatic function. Sportive and bamboo lemurs, in contrast, showed more modest sequence change. The greater change in indriids may reflect a shared strategy emphasizing complex gut morphology and microbiota to facilitate folivory. This case study illustrates how genetic analysis may reveal differences in functional traits that could influence species’ ecology and, in turn, their resilience to habitat change. Moreover, our results support the body of work demonstrating that not all primate folivores are built the same and reiterate the need to avoid generalizations about dietary guild in considering conservation outlook, particularly in lemurs where such diversity in folivory has probably led to extensive specialization via niche partitioning.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Frontiers in Ecology and Evolution

DOI

EISSN

2296-701X

Publication Date

October 6, 2021

Volume

9

Related Subject Headings

  • 4102 Ecological applications
  • 3104 Evolutionary biology
  • 3103 Ecology
  • 0603 Evolutionary Biology
  • 0602 Ecology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Guevara, E. E., Greene, L. K., Blanco, M. B., Farmer, C., Ranaivonasy, J., Ratsirarson, J., … Yoder, A. D. (2021). Molecular Adaptation to Folivory and the Conservation Implications for Madagascar’s Lemurs. Frontiers in Ecology and Evolution, 9. https://doi.org/10.3389/fevo.2021.736741
Guevara, E. E., L. K. Greene, M. B. Blanco, C. Farmer, J. Ranaivonasy, J. Ratsirarson, K. L. Mahefarisoa, et al. “Molecular Adaptation to Folivory and the Conservation Implications for Madagascar’s Lemurs.” Frontiers in Ecology and Evolution 9 (October 6, 2021). https://doi.org/10.3389/fevo.2021.736741.
Guevara EE, Greene LK, Blanco MB, Farmer C, Ranaivonasy J, Ratsirarson J, et al. Molecular Adaptation to Folivory and the Conservation Implications for Madagascar’s Lemurs. Frontiers in Ecology and Evolution. 2021 Oct 6;9.
Guevara, E. E., et al. “Molecular Adaptation to Folivory and the Conservation Implications for Madagascar’s Lemurs.” Frontiers in Ecology and Evolution, vol. 9, Oct. 2021. Scopus, doi:10.3389/fevo.2021.736741.
Guevara EE, Greene LK, Blanco MB, Farmer C, Ranaivonasy J, Ratsirarson J, Mahefarisoa KL, Rajaonarivelo T, Rakotondrainibe HH, Junge RE, Williams CV, Rambeloson E, Rasoanaivo HA, Rahalinarivo V, Andrianandrianina LH, Clayton JB, Rothman RS, Lawler RR, Bradley BJ, Yoder AD. Molecular Adaptation to Folivory and the Conservation Implications for Madagascar’s Lemurs. Frontiers in Ecology and Evolution. 2021 Oct 6;9.

Published In

Frontiers in Ecology and Evolution

DOI

EISSN

2296-701X

Publication Date

October 6, 2021

Volume

9

Related Subject Headings

  • 4102 Ecological applications
  • 3104 Evolutionary biology
  • 3103 Ecology
  • 0603 Evolutionary Biology
  • 0602 Ecology