Skip to main content

Biased agonists of the chemokine receptor CXCR3 differentially signal through Gαi:β-arrestin complexes.

Publication ,  Journal Article
Zheng, K; Smith, JS; Eiger, DS; Warman, A; Choi, I; Honeycutt, CC; Boldizsar, N; Gundry, JN; Pack, TF; Inoue, A; Caron, MG; Rajagopal, S
Published in: Sci Signal
March 22, 2022

G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors and signal through the proximal effectors, G proteins and β-arrestins, to influence nearly every biological process. The G protein and β-arrestin signaling pathways have largely been considered separable; however, direct interactions between Gα proteins and β-arrestins have been described that appear to be part of a distinct GPCR signaling pathway. Within these complexes, Gαi/o, but not other Gα protein subtypes, directly interacts with β-arrestin, regardless of the canonical Gα protein that is coupled to the GPCR. Here, we report that the endogenous biased chemokine agonists of CXCR3 (CXCL9, CXCL10, and CXCL11), together with two small-molecule biased agonists, differentially formed Gαi:β-arrestin complexes. Formation of the Gαi:β-arrestin complexes did not correlate well with either G protein activation or β-arrestin recruitment. β-arrestin biosensors demonstrated that ligands that promoted Gαi:β-arrestin complex formation generated similar β-arrestin conformations. We also found that Gαi:β-arrestin complexes did not couple to the mitogen-activated protein kinase ERK, as is observed with other receptors such as the V2 vasopressin receptor, but did couple with the clathrin adaptor protein AP-2, which suggests context-dependent signaling by these complexes. These findings reinforce the notion that Gαi:β-arrestin complex formation is a distinct GPCR signaling pathway and enhance our understanding of the spectrum of biased agonism.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Sci Signal

DOI

EISSN

1937-9145

Publication Date

March 22, 2022

Volume

15

Issue

726

Start / End Page

eabg5203

Location

United States

Related Subject Headings

  • beta-Arrestins
  • beta-Arrestin 1
  • Signal Transduction
  • Receptors, G-Protein-Coupled
  • GTP-Binding Proteins
  • 3101 Biochemistry and cell biology
  • 0601 Biochemistry and Cell Biology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Zheng, K., Smith, J. S., Eiger, D. S., Warman, A., Choi, I., Honeycutt, C. C., … Rajagopal, S. (2022). Biased agonists of the chemokine receptor CXCR3 differentially signal through Gαi:β-arrestin complexes. Sci Signal, 15(726), eabg5203. https://doi.org/10.1126/scisignal.abg5203
Zheng, Kevin, Jeffrey S. Smith, Dylan S. Eiger, Anmol Warman, Issac Choi, Christopher C. Honeycutt, Noelia Boldizsar, et al. “Biased agonists of the chemokine receptor CXCR3 differentially signal through Gαi:β-arrestin complexes.Sci Signal 15, no. 726 (March 22, 2022): eabg5203. https://doi.org/10.1126/scisignal.abg5203.
Zheng K, Smith JS, Eiger DS, Warman A, Choi I, Honeycutt CC, et al. Biased agonists of the chemokine receptor CXCR3 differentially signal through Gαi:β-arrestin complexes. Sci Signal. 2022 Mar 22;15(726):eabg5203.
Zheng, Kevin, et al. “Biased agonists of the chemokine receptor CXCR3 differentially signal through Gαi:β-arrestin complexes.Sci Signal, vol. 15, no. 726, Mar. 2022, p. eabg5203. Pubmed, doi:10.1126/scisignal.abg5203.
Zheng K, Smith JS, Eiger DS, Warman A, Choi I, Honeycutt CC, Boldizsar N, Gundry JN, Pack TF, Inoue A, Caron MG, Rajagopal S. Biased agonists of the chemokine receptor CXCR3 differentially signal through Gαi:β-arrestin complexes. Sci Signal. 2022 Mar 22;15(726):eabg5203.

Published In

Sci Signal

DOI

EISSN

1937-9145

Publication Date

March 22, 2022

Volume

15

Issue

726

Start / End Page

eabg5203

Location

United States

Related Subject Headings

  • beta-Arrestins
  • beta-Arrestin 1
  • Signal Transduction
  • Receptors, G-Protein-Coupled
  • GTP-Binding Proteins
  • 3101 Biochemistry and cell biology
  • 0601 Biochemistry and Cell Biology