Skip to main content

The Impact of Observing Strategy on Cosmological Constraints with LSST

Publication ,  Journal Article
Lochner, M; Scolnic, D; Almoubayyed, H; Anguita, T; Awan, H; Gawiser, E; A Gontcho, SG; Graham, ML; Gris, P; Huber, S; Jha, SW; Lynne Jones, R ...
Published in: Astrophysical Journal, Supplement Series
April 1, 2022

The generation-defining Vera C. Rubin Observatory will make state-of-the-art measurements of both the static and transient universe through its Legacy Survey for Space and Time (LSST). With such capabilities, it is immensely challenging to optimize the LSST observing strategy across the survey's wide range of science drivers. Many aspects of the LSST observing strategy relevant to the LSST Dark Energy Science Collaboration, such as survey footprint definition, single-visit exposure time, and the cadence of repeat visits in different filters, are yet to be finalized. Here, we present metrics used to assess the impact of observing strategy on the cosmological probes considered most sensitive to survey design; these are large-scale structure, weak lensing, type Ia supernovae, kilonovae, and strong lens systems (as well as photometric redshifts, which enable many of these probes). We evaluate these metrics for over 100 different simulated potential survey designs. Our results show that multiple observing strategy decisions can profoundly impact cosmological constraints with LSST; these include adjusting the survey footprint, ensuring repeat nightly visits are taken in different filters, and enforcing regular cadence. We provide public code for our metrics, which makes them readily available for evaluating further modifications to the survey design. We conclude with a set of recommendations and highlight observing strategy factors that require further research.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Astrophysical Journal, Supplement Series

DOI

ISSN

0067-0049

Publication Date

April 1, 2022

Volume

259

Issue

2

Related Subject Headings

  • Astronomy & Astrophysics
  • 5101 Astronomical sciences
  • 0306 Physical Chemistry (incl. Structural)
  • 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
  • 0201 Astronomical and Space Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Lochner, M., Scolnic, D., Almoubayyed, H., Anguita, T., Awan, H., Gawiser, E., … Stubbs, C. (2022). The Impact of Observing Strategy on Cosmological Constraints with LSST. Astrophysical Journal, Supplement Series, 259(2). https://doi.org/10.3847/1538-4365/ac5033
Lochner, M., D. Scolnic, H. Almoubayyed, T. Anguita, H. Awan, E. Gawiser, S. G. A Gontcho, et al. “The Impact of Observing Strategy on Cosmological Constraints with LSST.” Astrophysical Journal, Supplement Series 259, no. 2 (April 1, 2022). https://doi.org/10.3847/1538-4365/ac5033.
Lochner M, Scolnic D, Almoubayyed H, Anguita T, Awan H, Gawiser E, et al. The Impact of Observing Strategy on Cosmological Constraints with LSST. Astrophysical Journal, Supplement Series. 2022 Apr 1;259(2).
Lochner, M., et al. “The Impact of Observing Strategy on Cosmological Constraints with LSST.” Astrophysical Journal, Supplement Series, vol. 259, no. 2, Apr. 2022. Scopus, doi:10.3847/1538-4365/ac5033.
Lochner M, Scolnic D, Almoubayyed H, Anguita T, Awan H, Gawiser E, A Gontcho SG, Graham ML, Gris P, Huber S, Jha SW, Lynne Jones R, Kim AG, Mandelbaum R, Marshall P, Petrushevska T, Regnault N, Setzer CN, Suyu SH, Yoachim P, Biswas R, Blaineau T, Hook I, Moniez M, Neilsen E, Peiris H, Rothchild D, Stubbs C. The Impact of Observing Strategy on Cosmological Constraints with LSST. Astrophysical Journal, Supplement Series. 2022 Apr 1;259(2).

Published In

Astrophysical Journal, Supplement Series

DOI

ISSN

0067-0049

Publication Date

April 1, 2022

Volume

259

Issue

2

Related Subject Headings

  • Astronomy & Astrophysics
  • 5101 Astronomical sciences
  • 0306 Physical Chemistry (incl. Structural)
  • 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
  • 0201 Astronomical and Space Sciences