Inter- and intra-scan variability for lung imaging quantifications via CT.
CT imaging provides physicians valuable insights when diagnosing disease in a clinical setting. In order to provide an accurate diagnosis, is it important to have a high accuracy with controlled variability across CT scans from different scanners and imaging parameters. The purpose of this study was to analyze variability of lung imaging biomarkers across various scanners and parameters using a customized version of a commercially available anthropomorphic chest Phantom (Kyoto Kagaku) with several experimental sample inserts. The phantom was across 10 different CT scanners with a total of 209 imaging conditions. An algorithm was developed to compute different imaging biomarkers. Variability across images from the same scanner and from different scanners was analyzed by computing coefficients of variation (CV) and standard deviations of HU values. LAA -950 and LAA -856 biomarkers had the highest levels of variability, while the majority of other biomarkers had variability less than 10 HU or 10% CV in both inter and intra-scan measurements. There was no clear trend present between the biomarker measurements and CTDIvol. The results of this study demonstrates the existing variability in CT quantifications for lung imaging, which prompt further studies on how to reduce such variation.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Location
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
Citation
Published In
DOI
ISSN
Publication Date
Volume
Location
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering