Skip to main content
Journal cover image

Multi-scale Fisher's independence test for multivariate dependence.

Publication ,  Journal Article
Gorsky, S; Ma, L
Published in: Biometrika
September 2022

Identifying dependency in multivariate data is a common inference task that arises in numerous applications. However, existing nonparametric independence tests typically require computation that scales at least quadratically with the sample size, making it difficult to apply them in the presence of massive sample sizes. Moreover, resampling is usually necessary to evaluate the statistical significance of the resulting test statistics at finite sample sizes, further worsening the computational burden. We introduce a scalable, resampling-free approach to testing the independence between two random vectors by breaking down the task into simple univariate tests of independence on a collection of 2 × 2 contingency tables constructed through sequential coarse-to-fine discretization of the sample space, transforming the inference task into a multiple testing problem that can be completed with almost linear complexity with respect to the sample size. To address increasing dimensionality, we introduce a coarse-to-fine sequential adaptive procedure that exploits the spatial features of dependency structures. We derive a finite-sample theory that guarantees the inferential validity of our adaptive procedure at any given sample size. We show that our approach can achieve strong control of the level of the testing procedure at any sample size without resampling or asymptotic approximation and establish its large-sample consistency. We demonstrate through an extensive simulation study its substantial computational advantage in comparison to existing approaches while achieving robust statistical power under various dependency scenarios, and illustrate how its divide-and-conquer nature can be exploited to not just test independence, but to learn the nature of the underlying dependency. Finally, we demonstrate the use of our method through analysing a dataset from a flow cytometry experiment.

Duke Scholars

Published In

Biometrika

DOI

EISSN

1464-3510

ISSN

0006-3444

Publication Date

September 2022

Volume

109

Issue

3

Start / End Page

569 / 587

Related Subject Headings

  • Statistics & Probability
  • 4905 Statistics
  • 3802 Econometrics
  • 1403 Econometrics
  • 0104 Statistics
  • 0103 Numerical and Computational Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Gorsky, S., & Ma, L. (2022). Multi-scale Fisher's independence test for multivariate dependence. Biometrika, 109(3), 569–587. https://doi.org/10.1093/biomet/asac013
Gorsky, S., and L. Ma. “Multi-scale Fisher's independence test for multivariate dependence.Biometrika 109, no. 3 (September 2022): 569–87. https://doi.org/10.1093/biomet/asac013.
Gorsky S, Ma L. Multi-scale Fisher's independence test for multivariate dependence. Biometrika. 2022 Sep;109(3):569–87.
Gorsky, S., and L. Ma. “Multi-scale Fisher's independence test for multivariate dependence.Biometrika, vol. 109, no. 3, Sept. 2022, pp. 569–87. Epmc, doi:10.1093/biomet/asac013.
Gorsky S, Ma L. Multi-scale Fisher's independence test for multivariate dependence. Biometrika. 2022 Sep;109(3):569–587.
Journal cover image

Published In

Biometrika

DOI

EISSN

1464-3510

ISSN

0006-3444

Publication Date

September 2022

Volume

109

Issue

3

Start / End Page

569 / 587

Related Subject Headings

  • Statistics & Probability
  • 4905 Statistics
  • 3802 Econometrics
  • 1403 Econometrics
  • 0104 Statistics
  • 0103 Numerical and Computational Mathematics