Contact Angle Measurements Using Sessile Drop and Micro-CT Data from Six Sandstones
Numerous sessile drop and micro-computed tomography (micro-CT) studies have been conducted to quantify geologic carbon storage formation wettability by measuring static contact angles (θ); however, the influence of pore geometry remains unknown. In this work, six sandstones (Bandera Brown, Berea, Bentheimer, Mt. Simon, Navajo, and Nugget) are used to measure θ using the two aforementioned experimental methods at identical testing conditions (45 °C and 12.41 MPa). The range of θ measured at in situ conditions (micro-CT) exceeds the range at ex situ (sessile drop method) conditions for all sandstones. However, when droplets with more representative in situ diameters are analyzed, θ averages show ex situ θ exceed those of in situ θ. Pore geometry does influence local θ, but the size of ex situ droplets relative to pore size appears to influence θ. This is important to consider for future sessile drop studies used for analysis of CO2 behavior in carbon storage reservoirs.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Environmental Engineering
- 4901 Applied mathematics
- 4005 Civil engineering
- 4004 Chemical engineering
- 0905 Civil Engineering
- 0904 Chemical Engineering
- 0102 Applied Mathematics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Environmental Engineering
- 4901 Applied mathematics
- 4005 Civil engineering
- 4004 Chemical engineering
- 0905 Civil Engineering
- 0904 Chemical Engineering
- 0102 Applied Mathematics