Skip to main content
Journal cover image

Quantitative Analysis of the Reduction Kinetics Responsible for the One-Pot Synthesis of Pd-Pt Bimetallic Nanocrystals with Different Structures

Publication ,  Journal Article
Zhou, M; Wang, H; Vara, M; Hood, ZD; Luo, M; Yang, TH; Bao, S; Chi, M; Xiao, P; Zhang, Y; Xia, Y
Published in: Journal of the American Chemical Society
September 21, 2016

We report a quantitative understanding of the reduction kinetics responsible for the formation of Pd-Pt bimetallic nanocrystals with two distinctive structures. The syntheses involve the use of KBr to manipulate the reaction kinetics by influencing the redox potentials of metal precursor ions via ligand exchange. In the absence of KBr, the ratio between the initial reduction rates of PdCl42- and PtCl42- was about 10.0, leading to the formation of Pd@Pt octahedra with a core-shell structure. In the presence of 63 mM KBr, the products became Pd-Pt alloy nanocrystals. In this case, the ratio between the initial reduction rates of the two precursors dropped to 2.4 because of ligand exchange and, thus, the formation of PdBr42- and PtBr42-. The alloy nanocrystals took a cubic shape owing to the selective capping effect of Br- ions toward the {100} facets. Relative to the alloy nanocubes, the Pd@Pt core-shell octahedra showed substantial enhancement in both catalytic activity and durability toward the oxygen reduction reaction (ORR). Specifically, the specific (1.51 mA cm-2) and mass (1.05 A mg-1Pt) activities of the core-shell octahedra were enhanced by about four- and three-fold relative to the alloy nanocubes (0.39 mA cm-2 and 0.34 A mg-1Pt, respectively). Even after 20000 cycles of accelerated durability test, the core-shell octahedra still exhibited a mass activity of 0.68 A mg-1Pt, twice that of a pristine commercial Pt/C catalyst.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Journal of the American Chemical Society

DOI

EISSN

1520-5126

ISSN

0002-7863

Publication Date

September 21, 2016

Volume

138

Issue

37

Start / End Page

12263 / 12270

Related Subject Headings

  • General Chemistry
  • 40 Engineering
  • 34 Chemical sciences
  • 03 Chemical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Zhou, M., Wang, H., Vara, M., Hood, Z. D., Luo, M., Yang, T. H., … Xia, Y. (2016). Quantitative Analysis of the Reduction Kinetics Responsible for the One-Pot Synthesis of Pd-Pt Bimetallic Nanocrystals with Different Structures. Journal of the American Chemical Society, 138(37), 12263–12270. https://doi.org/10.1021/jacs.6b07213
Zhou, M., H. Wang, M. Vara, Z. D. Hood, M. Luo, T. H. Yang, S. Bao, et al. “Quantitative Analysis of the Reduction Kinetics Responsible for the One-Pot Synthesis of Pd-Pt Bimetallic Nanocrystals with Different Structures.” Journal of the American Chemical Society 138, no. 37 (September 21, 2016): 12263–70. https://doi.org/10.1021/jacs.6b07213.
Zhou M, Wang H, Vara M, Hood ZD, Luo M, Yang TH, et al. Quantitative Analysis of the Reduction Kinetics Responsible for the One-Pot Synthesis of Pd-Pt Bimetallic Nanocrystals with Different Structures. Journal of the American Chemical Society. 2016 Sep 21;138(37):12263–70.
Zhou, M., et al. “Quantitative Analysis of the Reduction Kinetics Responsible for the One-Pot Synthesis of Pd-Pt Bimetallic Nanocrystals with Different Structures.” Journal of the American Chemical Society, vol. 138, no. 37, Sept. 2016, pp. 12263–70. Scopus, doi:10.1021/jacs.6b07213.
Zhou M, Wang H, Vara M, Hood ZD, Luo M, Yang TH, Bao S, Chi M, Xiao P, Zhang Y, Xia Y. Quantitative Analysis of the Reduction Kinetics Responsible for the One-Pot Synthesis of Pd-Pt Bimetallic Nanocrystals with Different Structures. Journal of the American Chemical Society. 2016 Sep 21;138(37):12263–12270.
Journal cover image

Published In

Journal of the American Chemical Society

DOI

EISSN

1520-5126

ISSN

0002-7863

Publication Date

September 21, 2016

Volume

138

Issue

37

Start / End Page

12263 / 12270

Related Subject Headings

  • General Chemistry
  • 40 Engineering
  • 34 Chemical sciences
  • 03 Chemical Sciences