Active and stable embedded Au@CeO2 catalysts for preferential oxidation of CO
Publication
, Journal Article
Cargnello, M; Gentilini, C; Montini, T; Fonda, E; Mehraeen, S; Chi, M; Herrera-Collado, M; Browning, ND; Polizzi, S; Pasquato, L; Fornasiero, P
Published in: Chemistry of Materials
We present a way to stabilize the Au phase supported on ceria by encapsulation of preformed Au nanoparticles (Au NPs) inside a porous ceria layer. The functionalization of the surface of the nanoparticles with carboxylic groups provides the link between the metal phase and the growing Ce(OH) x barrier, which is then transformed during calcination to obtain the final Au@CeO2 materials. The sample with a metal loading of 1 wt % shows good activity under real PReferential OXidation (PROX) conditions and better activity than catalysts of higher metal loadings or prepared through optimized deposition-precipitation methods described in the literature. Under simulated aging, the Au(1 wt %)@CeO2 sample exhibits minor deactivation, which is mainly associated with the formation of carbonates that can be reversed by a mild regenerative oxidative treatment to fully restore its initial activity. Vice versa, the other catalysts show either the unavoidable reversible carbonate poisoning or the irreversible deactivation due to metal sintering/agglomeration phenomena. A plethora of characterization techniques (CO chemisorption, X-ray diffraction, X-ray absorption spectroscopy, aberration-corrected scanning transmission electron microscopy) has been used to confirm the structure of these catalysts and to identify the underlying phenomena controlling their activity. © 2010 American Chemical Society.