Low thermal conductivity carbon fibrous composite nanomaterial enabled by multi-scale porous structure
Low thermal conductivity carbon is a type of material for special uses such as thermal insulation/protection and particularly for ablative thermal protection material of reentry vehicles and rocket engine components. In this research, a low thermal conductivity carbon nanofibrous material was prepared by electrospinning polyacrylonitrile (PAN) with poly (methyl methacrylate) (PMMA) as well as silica nanoparticles (SNPs) followed by stabilization and carbonization. Morphology and structure of this carbon nanofibrous material were characterized by electron microscope, X-ray diffraction, Raman spectroscopy, and BET surface area analysis and correlated with its thermal conductivity. Introduction of PMMA and SNPs to PAN precursor nanofibers through multi-component electrospinning enabled a unique concurrent multi-scale (micro-, submicro- and nano-) porous structure in the resultant carbon nanofibrous mat and synergistically reduced the thermal conductivity by up to 98% with respect to the non-porous carbon film counterpart. This research demonstrated a novel and effective way to design and manufacture low thermal conductivity carbon materials.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Materials
- 4017 Mechanical engineering
- 4016 Materials engineering
- 0913 Mechanical Engineering
- 0912 Materials Engineering
- 0910 Manufacturing Engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Materials
- 4017 Mechanical engineering
- 4016 Materials engineering
- 0913 Mechanical Engineering
- 0912 Materials Engineering
- 0910 Manufacturing Engineering