Communication-Efficient BFT Using Small Trusted Hardware to Tolerate Minority Corruption
Agreement protocols for partially synchronous networks tolerate fewer than one-third Byzantine faults. If parties are equipped with trusted hardware that prevents equivocation, then fault tolerance can be improved to fewer than one-half Byzantine faults, but typically at the cost of increased communication complexity. In this work, we present results that use small trusted hardware without worsening communication complexity assuming the adversary controls a fraction of the network that is less than one-half. In particular, we show a version of HotStuff that retains linear communication complexity in each view, leveraging trusted hardware to tolerate a minority of corruptions. Our result uses expander graph techniques to achieve efficient communication in a manner that may be of independent interest.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Related Subject Headings
- 46 Information and computing sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Related Subject Headings
- 46 Information and computing sciences