Temporal limits of a rapidly swept Langmuir probe
The finite, electrostatically achievable, temporal resolution of plasma properties from a turbulent discharge is limited by an array of effects wherein the theory of Langmuir probes breaks down. Formulations for the particle transit time, sheath formation time, plasma-probe resonance, polarization current, sheath capacitance, stray capacitance, and mutual capacitance effects are all evaluated for time-resolved operation of a Langmuir probe. The resulting time scales serve to place a theoretical bound on the maximum rate of a rapidly swept Langmuir probe as analyzed with typical thin-sheath collisionless probe theory. For plasma typical to the plume of a Hall effect thruster [xenon plasma, n
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Fluids & Plasmas
- 5109 Space sciences
- 5106 Nuclear and plasma physics
- 0203 Classical Physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
- 0201 Astronomical and Space Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Fluids & Plasmas
- 5109 Space sciences
- 5106 Nuclear and plasma physics
- 0203 Classical Physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
- 0201 Astronomical and Space Sciences