Skip to main content

Artificial intelligence for natural product drug discovery.

Publication ,  Journal Article
Mullowney, MW; Duncan, KR; Elsayed, SS; Garg, N; van der Hooft, JJJ; Martin, NI; Meijer, D; Terlouw, BR; Biermann, F; Blin, K; Durairaj, J ...
Published in: Nature reviews. Drug discovery
November 2023

Developments in computational omics technologies have provided new means to access the hidden diversity of natural products, unearthing new potential for drug discovery. In parallel, artificial intelligence approaches such as machine learning have led to exciting developments in the computational drug design field, facilitating biological activity prediction and de novo drug design for molecular targets of interest. Here, we describe current and future synergies between these developments to effectively identify drug candidates from the plethora of molecules produced by nature. We also discuss how to address key challenges in realizing the potential of these synergies, such as the need for high-quality datasets to train deep learning algorithms and appropriate strategies for algorithm validation.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Nature reviews. Drug discovery

DOI

EISSN

1474-1784

ISSN

1474-1776

Publication Date

November 2023

Volume

22

Issue

11

Start / End Page

895 / 916

Related Subject Headings

  • Pharmacology & Pharmacy
  • Machine Learning
  • Humans
  • Drug Discovery
  • Drug Design
  • Biological Products
  • Artificial Intelligence
  • Algorithms
  • 42 Health sciences
  • 32 Biomedical and clinical sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Mullowney, M. W., Duncan, K. R., Elsayed, S. S., Garg, N., van der Hooft, J. J. J., Martin, N. I., … Medema, M. H. (2023). Artificial intelligence for natural product drug discovery. Nature Reviews. Drug Discovery, 22(11), 895–916. https://doi.org/10.1038/s41573-023-00774-7
Mullowney, Michael W., Katherine R. Duncan, Somayah S. Elsayed, Neha Garg, Justin J. J. van der Hooft, Nathaniel I. Martin, David Meijer, et al. “Artificial intelligence for natural product drug discovery.Nature Reviews. Drug Discovery 22, no. 11 (November 2023): 895–916. https://doi.org/10.1038/s41573-023-00774-7.
Mullowney MW, Duncan KR, Elsayed SS, Garg N, van der Hooft JJJ, Martin NI, et al. Artificial intelligence for natural product drug discovery. Nature reviews Drug discovery. 2023 Nov;22(11):895–916.
Mullowney, Michael W., et al. “Artificial intelligence for natural product drug discovery.Nature Reviews. Drug Discovery, vol. 22, no. 11, Nov. 2023, pp. 895–916. Epmc, doi:10.1038/s41573-023-00774-7.
Mullowney MW, Duncan KR, Elsayed SS, Garg N, van der Hooft JJJ, Martin NI, Meijer D, Terlouw BR, Biermann F, Blin K, Durairaj J, Gorostiola González M, Helfrich EJN, Huber F, Leopold-Messer S, Rajan K, de Rond T, van Santen JA, Sorokina M, Balunas MJ, Beniddir MA, van Bergeijk DA, Carroll LM, Clark CM, Clevert D-A, Dejong CA, Du C, Ferrinho S, Grisoni F, Hofstetter A, Jespers W, Kalinina OV, Kautsar SA, Kim H, Leao TF, Masschelein J, Rees ER, Reher R, Reker D, Schwaller P, Segler M, Skinnider MA, Walker AS, Willighagen EL, Zdrazil B, Ziemert N, Goss RJM, Guyomard P, Volkamer A, Gerwick WH, Kim HU, Müller R, van Wezel GP, van Westen GJP, Hirsch AKH, Linington RG, Robinson SL, Medema MH. Artificial intelligence for natural product drug discovery. Nature reviews Drug discovery. 2023 Nov;22(11):895–916.

Published In

Nature reviews. Drug discovery

DOI

EISSN

1474-1784

ISSN

1474-1776

Publication Date

November 2023

Volume

22

Issue

11

Start / End Page

895 / 916

Related Subject Headings

  • Pharmacology & Pharmacy
  • Machine Learning
  • Humans
  • Drug Discovery
  • Drug Design
  • Biological Products
  • Artificial Intelligence
  • Algorithms
  • 42 Health sciences
  • 32 Biomedical and clinical sciences