Stability prediction via parameter estimation from milling time series
Machine tool vibrations impose severe limitations on industry. Recent progress in solving for the stability behavior of delay differential equations and in modeling milling operations with time delay differential equations has provided the potential to significantly reduce the aforementioned limitations. However, industry has yet to widely adopt the current academic knowledge due to the cost barriers in implementing this knowledge. Some of these cost prohibitive tasks include time-consuming experimental cutting tests used to calibrate model force parameters and experimental modal tests for every combination of tool, tool holder, tool length, spindle, and machine. This paper introduces an alternative approach whereby the vibration behavior of a milling tool during cutting is used to obtain the necessary model parameters for the common delay differential equation models of milling.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Related Subject Headings
- Acoustics
- 51 Physical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Related Subject Headings
- Acoustics
- 51 Physical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences